Development of an automated neonatal EEG seizure monitor

Brain function requires a continuous flow of oxygen and glucose. An insufficient supply for a few minutes during the first period of life may have severe consequences or even result in death. This happens in one to six infants per 1000 live term births. Therefore, there is a high need for a method which can enable bedside brain monitoring to identify those neonates at risk and be able to start the treatment in time. The most important currently available technology to continuously monitor brain function is electroEncephaloGraphy (or EEG). Unfortunately, visual EEG analysis requires particular skills which are not always present round the clock in the Neonatal Intensive Care Unit (NICU). Even if those skills are available it is laborsome to manually analyse many hours of EEG. The lack of time and skill are the main reasons why EEG is ...

Deburchgraeve, Wouter — KU Leuven


Advanced models for monitoring stress and development trajectories in premature infants

This thesis focuses on the design of various automatic signal processing algorithms to extract information from physiological signals of preterm infants. Overall, the aim was to improve the neurodevelopmental outcome of the neonate. More specifically, three main research objectives were carried out. The first objective was to describe the maturation of neonates during their stay in the neonatal intensive care unit. The second objective was to assess the stress and pain in premature infants and their impact on the development of neonates. The third objective was to predict developmental disabilities, such as autism. The first part of this thesis presents an extensive overview of various developmental models to describe the maturation of premature infants. Three main strategies were proposed. The first strategy proposed an investigation of EEG connectivity networks. A variety of functional and effective connectivity methods were combined with ...

Lavanga, Mario — KU Leuven


Stereoscopic depth map estimation and coding techniques for multiview video systems

The dissertation deals with the problems of stereoscopic depth estimation and coding in multiview video systems, which are vital for development of the next generation three-dimensional television. The depth estimation algorithms known from literature, along with theoretical foundations are discussed. The problem of estimation of depth maps with high quality, expressed by means of accuracy, precision and temporal consistency, has been stated. Next, original solutions have been proposed. Author has proposed a novel, theoretically founded approach to depth estimation which employs Maximum A posteriori Probability (MAP) rule for modeling of the cost function used in optimization algorithms. The proposal has been presented along with a method for estimation of parameters of such model. In order to attain that, an analysis of the noise existing in multiview video and a study of inter-view correlation of corresponding samples of pictures have been ...

Stankiewicz, Olgierd — Poznan University of Technology


Characterization of the neurometabolic coupling in the premature brain using NIRS and EEG

Every year, an estimated 15 million babies are born preterm, that is, before 37 weeks of gestation. This number is rising in all countries and currently represents more than 1 in 10 babies, affecting families all over the world. During the last decades, the survival rate of prematurely born neonates has steadily increased, mainly as a result of medical and technical progress in neonatal intensive care. The very preterm infants, which represent up to 10% of the preterm infants in the EU, remain at risk for adverse outcome and neurodevelopmental disability. These maladaptive outcomes have a severe effect on the children’s quality of life and a huge economic impact on society. In order to reduce this burden and improve neonatal care in general, appropriate tools need to be developed to identify the neonates with a higher risk of adverse outcomes. ...

Hendrikx, Dries — KU Leuven


Data-Driven Multimodal Signal Processing With Applications To EEG-fMRI Fusion

Most cognitive processes in the brain are reflected through several aspects simultaneously, allowing us to observe the same process from different biological phenomena. The diverse nature of these biological processes suggests that a better understanding of cerebral activity may be achieved through multimodal measurements. One of the possible multimodal brain recording settings is the combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), which is one of the main topics of this thesis. Two groups of EEG-fMRI integration approaches are possible. The first group, commonly called model-based techniques, are very popular due to the fact that the results from such analyses confirm or disprove a specific hypothesis. However, such hypotheses are not always available, requiring a more explorative approach to analyze the data. This exploration is possible with the second group of approaches, the so-called data-driven methods. The data-driven ...

Mijović, Bogdan — KU Leuven


Online Machine Learning for Inference from Multivariate Time-series

Inference and data analysis over networks have become significant areas of research due to the increasing prevalence of interconnected systems and the growing volume of data they produce. Many of these systems generate data in the form of multivariate time series, which are collections of time series data that are observed simultaneously across multiple variables. For example, EEG measurements of the brain produce multivariate time series data that record the electrical activity of different brain regions over time. Cyber-physical systems generate multivariate time series that capture the behaviour of physical systems in response to cybernetic inputs. Similarly, financial time series reflect the dynamics of multiple financial instruments or market indices over time. Through the analysis of these time series, one can uncover important details about the behavior of the system, detect patterns, and make predictions. Therefore, designing effective methods for ...

Rohan Money — University of Agder, Norway


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Parametric spatial audio processing utilising compact microphone arrays

This dissertation focuses on the development of novel parametric spatial audio techniques using compact microphone arrays. Compact arrays are of special interest since they can be adapted to fit in portable devices, opening the possibility of exploiting the potential of immersive spatial audio algorithms in our daily lives. The techniques developed in this thesis consider the use of signal processing algorithms adapted for human listeners, thus exploiting the capabilities and limitations of human spatial hearing. The findings of this research are in the following three areas of spatial audio processing: directional filtering, spatial audio reproduction, and direction of arrival estimation. In directional filtering, two novel algorithms have been developed based on the cross-pattern coherence (CroPaC). The method essentially exploits the directional response of two different types of beamformers by using their cross-spectrum to estimate a soft masker. The soft masker ...

Delikaris-Manias, Symeon — Aalto University


Miniaturization effects and node placement for neural decoding in EEG sensor networks

Electroencephalography (EEG) is a non-invasive neurorecording technique, which has the potential to be used for 24/7 neuromonitoring in daily life, e.g., in the context of neural prostheses, brain-computer interfaces, or for improved diagnosis of brain disorders. Although existing mobile wireless EEG headsets are a useful tool for short-term experiments, they are still too heavy, bulky and obtrusive, for long-term EEG-monitoring in daily life. However, we are now witnessing a wave of new miniature EEG sensor devices containing small electrodes embedded in them, which we refer to as Mini-EEGs. Mini-EEGs ideally consist of a wireless node with a small scalp area footprint, in which the electrodes, amplifier and wireless radio are embedded. However, due to their miniaturization, these mini-EEGs have the drawback that only a few EEG channels can be recorded within a small area. The latter also implies that the ...

Mundanad Narayanan, Abhijith — KU Leuven


3D motion capture by computer vision and virtual rendering

Networked 3D virtual environments allow multiple users to interact with each other over the Internet. Users can share some sense of telepresence by remotely animating an avatar that represents them. However, avatar control may be tedious and still render user gestures poorly. This work aims at animating a user‟s avatar from real time 3D motion capture by monoscopic computer vision, thus allowing virtual telepresence to anyone using a personal computer with a webcam. The approach followed consists of registering a 3D articulated upper-body model to a video sequence. This involves searching iteratively for the best match between features extracted from the 3D model and from the image. A two-step registration process matches regions and then edges. The first contribution of this thesis is a method of allocating computing iterations under real-time constrain that achieves optimal robustness and accuracy. The major ...

Gomez Jauregui, David Antonio — Telecom SudParis


Functional Neuroimaging Data Characterisation Via Tensor Representations

The growing interest in neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has by now been recognized as an effective approach exploiting its inherent multi-way nature. In particular, the advantages of tensorial over matrix-based methods have previously been demonstrated in the context of functional magnetic resonance imaging (fMRI) source localization; the identification of the regions of the brain which are activated at specific time instances. However, such methods can also become ineffective in realistic challenging scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover, they commonly rely on the assumption of an underlying multilinear model generating the data. In the first part of this thesis, we aimed at investigating the possible gains from exploiting the 3-dimensional nature of the brain images, through a higher-order tensorization ...

Christos Chatzichristos — National and Kapodistrian University of Athens


EEG-Biofeedback and Epilepsy: Concept, Methodology and Tools for (Neuro)therapy Planning and Objective Evaluation

Objective diagnosis and therapy evaluation are still challenging tasks for many neurological disorders. This is highly related to the diversity of cases and the variety of treatment modalities available. Especially in the case of epilepsy, which is a complex disorder not well-explained at the biochemical and physiological levels, there is the need for investigations for novel features, which can be extracted and quantified from electrophysiological signals in clinical practice. Neurotherapy is a complementary treatment applied in various disorders of the central nervous system, including epilepsy. The method is subsumed under behavioral medicine and is considered an operant conditioning in psychological terms. Although the application areas of this promising unconventional approach are rapidly increasing, the method is strongly debated, since the neurophysiological underpinnings of the process are not yet well understood. Therefore, verification of the efficacy of the treatment is one ...

Kirlangic, Mehmet Eylem — Technische Universitaet Ilmenau


Towards an Automated Portable Electroencephalography-based System for Alzheimer’s Disease Diagnosis

Alzheimer’s disease (AD) is a neurodegenerative terminal disorder that accounts for nearly 70% of dementia cases worldwide. Global dementia incidence is projected to 75 million cases by 2030, with the majority of the affected individuals coming from low- and medium- income countries. Although there is no cure for AD, early diagnosis can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using mental status examinations, expensive neuroimaging scans, and invasive laboratory tests, all of which render the diagnosis time-consuming and costly. Notwithstanding, over the last decade electroencephalography (EEG), specifically resting-state EEG (rsEEG), has emerged as an alternative technique for AD diagnosis with accuracies inline with those obtained with more expensive neuroimaging tools, such as magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET). However the use of rsEEG for ...

Cassani, Raymundo — Université du Québec, Institut national de la recherche scientifique


Advanced solutions for neonatal analysis and the effects of maturation

Worldwide approximately 11% of the babies are born before 37 weeks of gestation. The survival rates of these prematurely born infants have steadily increased during the last decades as a result of the technical and medical progress in the neonatal intensive care units (NICUs). The focus of the NICUs has therefore gradually evolved from increasing life chances to improving quality of life. In this respect, promoting and supporting optimal brain development is crucial. Because these neonates are born during a period of rapid growth and development of the brain, they are susceptible to brain damage and therefore vulnerable to adverse neurodevelopmental outcome. In order to identify patients at risk of long-term disabilities, close monitoring of the neurological function during the first critical weeks is a primary concern in the current NICUs. Electroencephalography (EEG) is a valuable tool for continuous noninvasive ...

De Wel, Ofelie — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.