Content-based search and browsing in semantic multimedia retrieval

Growth in storage capacity has led to large digital video repositories and complicated the discovery of specific information without the laborious manual annotation of data. The research focuses on creating a retrieval system that is ultimately independent of manual work. To retrieve relevant content, the semantic gap between the searcher's information need and the content data has to be overcome using content-based technology. Semantic gap constitutes of two distinct elements: the ambiguity of the true information need and the equivocalness of digital video data. The research problem of this thesis is: what computational content-based models for retrieval increase the effectiveness of the semantic retrieval of digital video? The hypothesis is that semantic search performance can be improved using pattern recognition, data abstraction and clustering techniques jointly with human interaction through manually created queries and visual browsing. The results of this ...

Rautiainen, Mika — University of Oulou


Audio-visual processing and content management techniques, for the study of (human) bioacoustics phenomena

The present doctoral thesis aims towards the development of new long-term, multi-channel, audio-visual processing techniques for the analysis of bioacoustics phenomena. The effort is focused on the study of the physiology of the gastrointestinal system, aiming at the support of medical research for the discovery of gastrointestinal motility patterns and the diagnosis of functional disorders. The term "processing" in this case is quite broad, incorporating the procedures of signal processing, content description, manipulation and analysis, that are applied to all the recorded bioacoustics signals, the auxiliary audio-visual surveillance information (for the monitoring of experiments and the subjects' status), and the extracted audio-video sequences describing the abdominal sound-field alterations. The thesis outline is as follows. The main objective of the thesis, which is the technological support of medical research, is presented in the first chapter. A quick problem definition is initially ...

Dimoulas, Charalampos — Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece


Sound Event Detection by Exploring Audio Sequence Modelling

Everyday sounds in real-world environments are a powerful source of information by which humans can interact with their environments. Humans can infer what is happening around them by listening to everyday sounds. At the same time, it is a challenging task for a computer algorithm in a smart device to automatically recognise, understand, and interpret everyday sounds. Sound event detection (SED) is the process of transcribing an audio recording into sound event tags with onset and offset time values. This involves classification and segmentation of sound events in the given audio recording. SED has numerous applications in everyday life which include security and surveillance, automation, healthcare monitoring, multimedia information retrieval, and assisted living technologies. SED is to everyday sounds what automatic speech recognition (ASR) is to speech and automatic music transcription (AMT) is to music. The fundamental questions in designing ...

[Pankajakshan], [Arjun] — Queen Mary University of London


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


A Computational Framework for Sound Segregation in Music Signals

Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...

Martins, Luis Gustavo — Universidade do Porto


Density-based shape descriptors and similarity learning for 3D object retrieval

Next generation search engines will enable query formulations, other than text, relying on visual information encoded in terms of images and shapes. The 3D search technology, in particular, targets specialized application domains ranging from computer aided-design and manufacturing to cultural heritage archival and presentation. Content-based retrieval research aims at developing search engines that would allow users to perform a query by similarity of content. This thesis deals with two fundamentals problems in content-based 3D object retrieval: (1) How to describe a 3D shape to obtain a reliable representative for the subsequent task of similarity search? (2) How to supervise the search process to learn inter-shape similarities for more effective and semantic retrieval? Concerning the first problem, we develop a novel 3D shape description scheme based on probability density of multivariate local surface features. We constructively obtain local characterizations of 3D ...

Akgul, Ceyhun Burak — Bogazici University and Telecom ParisTech


Human-Centered Content-Based Image Retrieval

Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrieval (CBIR). In contrast with most purely technological approaches, the thesis Human-Centered Content-Based Image Retrieval approaches the problem from a human/user centered perspective. Psychophysical experiments were conducted in which people were asked to categorize colors. The data gathered from these experiments was fed to a Fast Exact Euclidean Distance (FEED) transform (Schouten & Van den Broek, 2004), which enabled the segmentation of color space based on human perception (Van den Broek et al., 2008). This unique color space segementation was exploited for texture analysis and image segmentation, and subsequently for full-featured CBIR. In addition, a unique CBIR-benchmark was developed (Van ...

van den Broek, Egon L. — Radboud University Nijmegen


Some Contributions to Music Signal Processing and to Mono-Microphone Blind Audio Source Separation

For humans, the sound is valuable mostly for its meaning. The voice is spoken language, music, artistic intent. Its physiological functioning is highly developed, as well as our understanding of the underlying process. It is a challenge to replicate this analysis using a computer: in many aspects, its capabilities do not match those of human beings when it comes to speech or instruments music recognition from the sound, to name a few. In this thesis, two problems are investigated: the source separation and the musical processing. The first part investigates the source separation using only one Microphone. The problem of sources separation arises when several audio sources are present at the same moment, mixed together and acquired by some sensors (one in our case). In this kind of situation it is natural for a human to separate and to recognize ...

Schutz, Antony — Eurecome/Mobile


Identification of versions of the same musical composition by processing audio descriptions

Automatically making sense of digital information, and specially of music digital documents, is an important problem our modern society is facing. In fact, there are still many tasks that, although being easily performed by humans, cannot be effectively performed by a computer. In this work we focus on one of such tasks: the identification of musical piece versions (alternate renditions of the same musical composition like cover songs, live recordings, remixes, etc.). In particular, we adopt a computational approach solely based on the information provided by the audio signal. We propose a system for version identification that is robust to the main musical changes between versions, including timbre, tempo, key and structure changes. Such a system exploits nonlinear time series analysis tools and standard methods for quantitative music description, and it does not make use of a specific modeling strategy ...

Serra, Joan — Universitat Pompeu Fabra


Video Content Analysis by Active Learning

Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...

Camara Chavez, Guillermo — Federal University of Minas Gerais


Extended Bag-of-Words Formalism for Image Classification

Visual information, in the form of digital images and videos, has become so omnipresent in computer databases and repositories, that it can no longer be considered a “second class citizen”, eclipsed by textual information. In that scenario, image classification has become a critical task. In particular, the pursuit of automatic identification of complex semantical concepts represented in images, such as scenes or objects, has motivated researchers in areas as diverse as Information Retrieval, Computer Vision, Image Processing and Artificial Intelligence. Nevertheless, in contrast to text documents, whose words carry semantic, images consist of pixels that have no semanticinformation by themselves, making the task very challenging. In this dissertation, we have addressed the problem of representing images based on their visual information. Our aim is content-based concept detection in images and videos, with a novel representation that enriches the Bag-of-Words model. ...

Avila, Sandra Eliza Fontes — Universidade Federal de Minas Gerais, Université Pierre et Marie Curie


Towards Automatic Extraction of Harmony Information from Music Signals

In this thesis we address the subject of automatic extraction of harmony information from audio recordings. We focus on chord symbol recognition and methods for evaluating algorithms designed to perform that task. We present a novel six-dimensional model for equal tempered pitch space based on concepts from neo-Riemannian music theory. This model is employed as the basis of a harmonic change detection function which we use to improve the performance of a chord recognition algorithm. We develop a machine readable text syntax for chord symbols and present a hand labelled chord transcription collection of 180 Beatles songs annotated using this syntax. This collection has been made publicly available and is already widely used for evaluation purposes in the research community. We also introduce methods for comparing chord symbols which we subsequently use for analysing the statistics of the transcription collection. ...

Harte, Christopher — Queen Mary, University of London


Decompositions Parcimonieuses Structurees: Application a la presentation objet de la musique

The amount of digital music available both on the Internet and by each listener has considerably raised for about ten years. The organization and the accessibillity of this amount of data demand that additional informations are available, such as artist, album and song names, musical genre, tempo, mood or other symbolic or semantic attributes. Automatic music indexing has thus become a challenging research area. If some tasks are now correctly handled for certain types of music, such as automatic genre classification for stereotypical music, music instrument recoginition on solo performance and tempo extraction, others are more difficult to perform. For example, automatic transcription of polyphonic signals and instrument ensemble recognition are still limited to some particular cases. The goal of our study is not to obain a perfect transcription of the signals and an exact classification of all the instruments ...

Leveau, Pierre — Universite Pierre et Marie Curie, Telecom ParisTech


Information-Theoretic Measures of Predictability for Music Content Analysis

This thesis is concerned with determining similarity in musical audio, for the purpose of applications in music content analysis. With the aim of determining similarity, we consider the problem of representing temporal structure in music. To represent temporal structure, we propose to compute information-theoretic measures of predictability in sequences. We apply our measures to track-wise representations obtained from musical audio; thereafter we consider the obtained measures predictors of musical similarity. We demonstrate that our approach benefits music content analysis tasks based on musical similarity. For the intermediate-specificity task of cover song identification, we compare contrasting discrete-valued and continuous-valued measures of pairwise predictability between sequences. In the discrete case, we devise a method for computing the normalised compression distance (NCD) which accounts for correlation between sequences. We observe that our measure improves average performance over NCD, for sequential compression algorithms. In ...

Foster, Peter — Queen Mary University of London


Performance Improvement of Multichannel Audio by Graphics Processing Units

Multichannel acoustic signal processing has undergone major development in recent years due to the increased complexity of current audio processing applications. People want to collaborate through communication with the feeling of being together and sharing the same environment, what is considered as Immersive Audio Schemes. In this phenomenon, several acoustic effects are involved: 3D spatial sound, room compensation, crosstalk cancelation, sound source localization, among others. However, high computing capacity is required to achieve any of these effects in a real large-scale system, what represents a considerable limitation for real-time applications. The increase of the computational capacity has been historically linked to the number of transistors in a chip. However, nowadays the improvements in the computational capacity are mainly given by increasing the number of processing units, i.e expanding parallelism in computing. This is the case of the Graphics Processing Units ...

Belloch, Jose A. — Universitat Politècnica de València

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.