Filter Bank Techniques for the Physical Layer in Wireless Communications

Filter bank based multicarrier is an evolution with many advantages over the widespread OFDM multicarrier scheme. The author of the thesis stands behind this statement and proposes various solutions for practical physical layer problems based on filter bank processing of wireless communications signals. Filter banks are an evolved form of subband processing, harnessing the key advantages of original efficient subband processing based on the fast Fourier transforms and addressing some of its shortcomings, at the price of a somewhat increased implementation complexity. The main asset of the filter banks is the possibility to design very frequency selective subband filters to compartmentalize the overall spectrum into well isolated subbands, while still making very efficient use of the assigned bandwidth. This thesis first exploits this main feature of the filter banks in the subband system configuration, in which the analysis filter bank ...

Hidalgo Stitz, Tobias — Tampere University of Technology


Subband and Frequency-Domain Adaptive Filtering Techniques for Speech Enhancement in Hands-free Communication

The telecommunications sector is characterized by an increasing demand for user-friendliness and interactivity. This explains the growing interest in hands-free communication systems. Signal quality in current hands-free systems is unsatisfactory. To overcome this, advanced signal processing techniques such as the subband and frequency-domain adaptive filter are employed to enhance the signal. These techniques are known to have computationally efficient solutions. Furthermore, thanks to the frequency-dependent processing and adaptivity, highly time-varying systems and signals with a continuously changing spectral content such as speech can be handled. This thesis deals with subband and frequency-domain adaptive filtering techniques for speech enhancement in hands-free communication. The text consists of four parts. In the first part design methods for perfect and nearly perfect reconstruction DFT modulated filter banks are discussed. Part II deals with subband and frequency-domain adaptive filtering. The subband adaptive filter and the ...

Eneman, Koen — Katholieke Universiteit Leuven


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Performance Enhancement for Filter Bank Multicarrier Methods in Multi-Antenna Wireless Communication Systems

This thesis investigates filter bank based multicarrier modulation using offset quadrature amplitude modulation (FBMC/OQAM), which is characterised by a critically sampled FBMC system that achieves full spectral efficiency in the sense of being free of redundancy. As a starting point, a performance comparison between FBMC/OQAM and oversampled (OS) FBMC systems is made in terms of per-subband fractionally spaced equalisation in order to compensate for the transmission distortions caused by dispersive channels. Simulation results show the reduced performance in equalising FBMC/OQAM compared to OS-FBMC, where the advantage for the latter stems from the use of guard bands. Alternatively, the inferior performance of FBMC/OQAM can be assigned to the inability of a per-subband equaliser to address the problem of potential intercarrier interference (ICI) in this system. The FBMC/OQAM system is analysed by representing the equivalent transmultiplexed channel including the filter banks as ...

Nagy, Amr — University of Strathclyde


Broadband adaptive beamforming with low complexity and frequency invariant response

This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation. A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save ...

Koh, Choo Leng — University of Southampton


Polynomial Matrix Decompositions and Paraunitary Filter Banks

There are an increasing number of problems that can be solved using paraunitary filter banks. The design of optimal orthonormal filter banks for the efficient coding of signals has received considerable interest over the years. In contrast, very little attention has been given to the problem of constructing paraunitary matrices for the purpose of broadband signal subspace estimation. This thesis begins by relating these two areas of research. A frequency-domain method of diagonalising parahermitian polynomial matrices is proposed and shown to have fundamental limitations. Then the thesis focuses on the development of a novel time-domain technique that extends the eigenvalue decomposition to polynomial matrices, referred to as the second order sequential best rotation (SBR2) algorithm. This technique imposes strong decorrelation on its input signals by applying a sequence of elementary paraunitary matrices which constitutes a generalisation of the classical Jacobi ...

Redif, Soydan — University of Southampton


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Distributed Signal Processing for Binaural Hearing Aids

Over the last centuries, hearing aids have evolved from crude and bulky horn-shaped instruments to lightweight and almost invisible digital signal processing devices. While most of the research has focused on the design of monaural apparatus, the use of a wireless link has been recently advocated to enable data transfer between hearing aids such as to obtain a binaural system. The availability of a wireless link offers brand new perspectives but also poses great technical challenges. It requires the design of novel signal processing schemes that address the restricted communication bitrates, processing delays and power consumption limitations imposed by wireless hearing aids. The goal of this dissertation is to address these issues at both a theoretical and a practical level. We start by taking a distributed source coding view on the problem of binaural noise reduction. The proposed analysis allows ...

Roy, Olivier — EPFL


Efficient Perceptual Audio Coding Using Cosine and Sine Modulated Lapped Transforms

The increasing number of simultaneous input and output channels utilized in immersive audio configurations primarily in broadcasting applications has renewed industrial requirements for efficient audio coding schemes with low bit-rate and complexity. This thesis presents a comprehensive review and extension of conventional approaches for perceptual coding of arbitrary multichannel audio signals. Particular emphasis is given to use cases ranging from two-channel stereophonic to six-channel 5.1-surround setups with or without the application-specific constraint of low algorithmic coding latency. Conventional perceptual audio codecs share six common algorithmic components, all of which are examined extensively in this thesis. The first is a signal-adaptive filterbank, constructed using instances of the real-valued modified discrete cosine transform (MDCT), to obtain spectral representations of successive portions of the incoming discrete time signal. Within this MDCT spectral domain, various intra- and inter-channel optimizations, most of which are of ...

Helmrich, Christian R. — Friedrich-Alexander-Universität Erlangen-Nürnberg


Reduced-Complexity Code Synchronization in Multipath Channels for BOC Modulated CDMA Signals with Applications in Galileo and Modernized GPS Systems

Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...

Burian, Adina — Universitat Trier


Design and applications of Filterbank structures implementing Reed-Solomon codes

In nowadays communication systems, error correction provides robust data transmission through imperfect (noisy) channels. Error correcting codes are a crucial component in most storage and communication systems – wired or wireless –, e.g. GSM, UMTS, xDSL, CD/DVD. At least as important as the data integrity issue is the recent realization that error correcting codes fundamentally change the trade-offs in system design. High-integrity, low redundancy coding can be applied to increase data rate, or battery life time or by reducing hardware costs, making it possible to enter mass market. When it comes to the design of error correcting codes and their properties, there are two main theories that play an important role in this work. Classical coding theory aims at finding the best code given an available block length. This thesis focuses on the ubiquitous Reed-Solomon codes, one of the major ...

Van Meerbergen, Geert — Katholieke Universiteit Leuven


Polynomial Predictive Filters: Implementation and Applications

In this thesis, smoothness of sampled real-world signals is exploited through the application of polynomial predictive filters. The principal reason for employing the polynomial signal model is principally twofold: firstly, assuming that the sampling rate is adequate, all real-world signals exhibit piecewise polynomial-like behavior, and secondly, polynomial-based signal processing is computationally efficient. By definition, polynomial predictive filters provide estimates of future values of polynomial-like signals. Thus, the potential applications of this research include a vast number of different delay sensitive operations on measurements like temperature, position, velocity, or power, especially in control engineering field. The polynomial-based predictive signal processing is a well-known technique, but polynomial-predictive filters have had severe drawbacks, which have hindered their application; their white noise attenuation is generally low, or they exhibit considerable passband gain peaks, rendering them unattractive for most applications. It has been possible to ...

Tanskanen, Jarno M. A. — Helsinki University of Technology


Distributed Spatial Filtering in Wireless Sensor Networks

Wireless sensor networks (WSNs) paved the way for accessing data previously unavailable by deploying sensors in various locations in space, each collecting local measurements of a target source signal. By exploiting the information resulting from the multitude of signals measured at the different sensors of the network, various tasks can be achieved, such as denoising or dimensionality reduction which can in turn be used, e.g., for source localization or detecting seizures from electroencephalography measurements. Spatial filtering consists of linearly combining the signals measured at each sensor of the network such that the resulting filtered signal is optimal in some sense. This technique is widely used in biomedical signal processing, wireless communication, and acoustics, among other fields. In spatial filtering tasks, the aim is to exploit the correlation between the signals of all sensors in the network, therefore requiring access to ...

Musluoglu, Cem Ates — KU Leuven


Reduced-Complexity Adaptive Filtering Techniques for Communications Applications

Adaptive filtering algorithms are powerful signal processing tools with widespread use in numerous engineering applications. Computational complexity is a key factor in determining the optimal implementation as well as real-time performance of the adaptive signal processors. To minimize the required hardware and/or software resources for implementing an adaptive filtering algorithm, it is desirable to mitigate its computational complexity as much as possible without imposing any significant sacrifice of performance. This thesis comprises a collection of thirteen peer-reviewed published works as well as an integrating material. The works are along the lines of a common unifying theme that is to devise new low-complexity adaptive filtering algorithms for communications and, more generally, signal processing applications. The main contributions are the new adaptive filtering algorithms, channel equalization techniques, and theoretical analyses listed below under four categories: 1) adaptive system identification • affine projection ...

Arablouei, Reza — University of South Australia


Filter Optimization for Personal Sound Zones Systems

Personal Sound Zones (PSZ) systems deliver different sounds to a number of listeners sharing an acoustic space through the use of loudspeakers together with signal processing techniques. These systems have attracted a lot of attention in recent years because of the wide range of applications that would benefit from the generation of individual listening zones, e.g., domestic or automotive audio applications. A key aspect of PSZ systems, at least for low and mid frequencies, is the optimization of the filters used to process the sound signals. Different algorithms have been proposed in the literature for computing those filters, each exhibiting some advantages and disadvantages. In this work, the state-of-the-art algorithms for PSZ systems are reviewed, and their performance in a reverberant environment is evaluated. Aspects such as the acoustic isolation between zones, the reproduction error, the energy of the filters, ...

Vicent Molés Cases — Universitat Politecnica de Valencia

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.