Speech Modeling and Robust Estimation for Diagnosis of Parkinson's Disease

According to the Parkinson’s Foundation, more than 10 million people world- wide suffer from Parkinson’s disease (PD). The common symptoms are tremor, muscle rigidity and slowness of movement. There is no cure available cur- rently, but clinical intervention can help alleviate the symptoms significantly. Recently, it has been found that PD can be detected and telemonitored by voice signals, such as sustained phonation /a/. However, the voiced-based PD detector suffers from severe performance degradation in adverse envi- ronments, such as noise, reverberation and nonlinear distortion, which are common in uncontrolled settings. In this thesis, we focus on deriving speech modeling and robust estima- tion algorithms capable of improving the PD detection accuracy in adverse environments. Robust estimation algorithms using parametric modeling of voice signals are proposed. We present both segment-wise and sample-wise robust pitch tracking algorithms using the harmonic model. ...

Shi, Liming — Aalborg University


Pitch-informed solo and accompaniment separation

This thesis addresses the development of a system for pitch-informed solo and accompaniment separation capable of separating main instruments from music accompaniment regardless of the musical genre of the track, or type of music accompaniment. For the solo instrument, only pitched monophonic instruments were considered in a single-channel scenario where no panning or spatial location information is available. In the proposed method, pitch information is used as an initial stage of a sinusoidal modeling approach that attempts to estimate the spectral information of the solo instrument from a given audio mixture. Instead of estimating the solo instrument on a frame by frame basis, the proposed method gathers information of tone objects to perform separation. Tone-based processing allowed the inclusion of novel processing stages for attack re nement, transient interference reduction, common amplitude modulation (CAM) of tone objects, and for better ...

Cano Cerón, Estefanía — Ilmenau University of Technology


A Computational Framework for Sound Segregation in Music Signals

Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...

Martins, Luis Gustavo — Universidade do Porto


Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology


Application of Sound Source Separation Methods to Advanced Spatial Audio Systems

This thesis is related to the field of Sound Source Separation (SSS). It addresses the development and evaluation of these techniques for their application in the resynthesis of high-realism sound scenes by means of Wave Field Synthesis (WFS). Because the vast majority of audio recordings are preserved in two-channel stereo format, special up-converters are required to use advanced spatial audio reproduction formats, such as WFS. This is due to the fact that WFS needs the original source signals to be available, in order to accurately synthesize the acoustic field inside an extended listening area. Thus, an object-based mixing is required. Source separation problems in digital signal processing are those in which several signals have been mixed together and the objective is to find out what the original signals were. Therefore, SSS algorithms can be applied to existing two-channel mixtures to ...

Cobos, Maximo — Universidad Politecnica de Valencia


New strategies for single-channel speech separation

We present new results on single-channel speech separation and suggest a new separation approach to improve the speech quality of separated signals from an observed mix- ture. The key idea is to derive a mixture estimator based on sinusoidal parameters. The proposed estimator is aimed at finding sinusoidal parameters in the form of codevectors from vector quantization (VQ) codebooks pre-trained for speakers that, when combined, best fit the observed mixed signal. The selected codevectors are then used to reconstruct the recovered signals for the speakers in the mixture. Compared to the log- max mixture estimator used in binary masks and the Wiener filtering approach, it is observed that the proposed method achieves an acceptable perceptual speech quality with less cross- talk at different signal-to-signal ratios. Moreover, the method is independent of pitch estimates and reduces the computational complexity of the ...

Pejman Mowlaee — Department of Electronic Systems, Aalborg University


Audio motif detection for guided source separation. Application to movie soudtracks.

In audio signal processing, source separation consists in recovering the different audio sources that compose a given observed audio mixture. They are many techniques to estimate these sources and the more information are taken into account about them the more the separation is likely to be successful. One way to incorporate information on sources is the use of a reference signal which will give a first approximation of this source. This thesis aims to explore the theoretical and applied aspects of reference guided source separation. The proposed approach called SPotted REference based Separation (SPORES) explore the particular case where the references are obtained automatically by motif spotting, i.e., by a search of similar content. Such an approach is useful for contents with a certain redundancy or if a large database is be available. Fortunately, the current context often puts us ...

Souviraà-Labastie Nathan — Université de Rennes 1


Sparse Modeling Heuristics for Parameter Estimation - Applications in Statistical Signal Processing

This thesis examines sparse statistical modeling on a range of applications in audio modeling, audio localizations, DNA sequencing, and spectroscopy. In the examined cases, the resulting estimation problems are computationally cumbersome, both as one often suffers from a lack of model order knowledge for this form of problems, but also due to the high dimensionality of the parameter spaces, which typically also yield optimization problems with numerous local minima. In this thesis, these problems are treated using sparse modeling heuristics, with the resulting criteria being solved using convex relaxations, inspired from disciplined convex programming ideas, to maintain tractability. The contributions to audio modeling and estimation focus on the estimation of the fundamental frequency of harmonically related sinusoidal signals, which is commonly used model for, e.g., voiced speech or tonal audio. We examine both the problems of estimating multiple audio sources ...

Adalbjörnsson, Stefan Ingi — Lund University


Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing

This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...

Kronvall, Ted — Lund University


Modern Optimization Methods for Interpolation of Missing Sections in Audio Signals

Damage to audio signals is in practice common, yet undesirable. Information loss can occur due to improper recording (low sample rate or dynamic range), transmission error (sample dropout), media damage, or because of noise. The removal of such disturbances is possible using inverse problems. Specifically, this work focuses on the situation where sections of an audio signal of length in the order of tens of milliseconds are completely lost, and the goal is to interpolate the missing samples based on the unimpaired context and a suitable signal model. The first part of the dissertation is devoted to convex and non-convex optimization methods, which are designed to find a solution to the interpolation problem based on the assumption of sparsity of the time-frequency spectrum. The general background and some algorithms are taken from the literature and adapted to the interpolation problem, ...

Mokrý, Ondřej — Brno University of Technology


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Informed spatial filters for speech enhancement

In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...

Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University


Constrained Non-negative Matrix Factorization for Vocabulary Acquisition from Continuous Speech

One desideratum in designing cognitive robots is autonomous learning of communication skills, just like humans. The primary step towards this goal is vocabulary acquisition. Being different from the training procedures of the state-of-the-art automatic speech recognition (ASR) systems, vocabulary acquisition cannot rely on prior knowledge of language in the same way. Like what infants do, the acquisition process should be data-driven with multi-level abstraction and coupled with multi-modal inputs. To avoid lengthy training efforts in a word-by-word interactive learning process, a clever learning agent should be able to acquire vocabularies from continuous speech automatically. The work presented in this thesis is entitled \emph{Constrained Non-negative Matrix Factorization for Vocabulary Acquisition from Continuous Speech}. Enlightened by the extensively studied techniques in ASR, we design computational models to discover and represent vocabularies from continuous speech with little prior knowledge of the language to ...

Sun, Meng — Katholieke Universiteit Leuven


Sequential Bayesian Modeling of non-stationary signals

are involved until the development of Sequential Monte Carlo techniques which are also known as the particle filters. In particle filtering, the problem is expressed in terms of state-space equations where the linearity and Gaussianity requirements of the Kalman filtering are generalized. Therefore, we need information about the functional form of the state variations. In this thesis, we bring a general solution for the cases where these variations are unknown and the process distributions cannot be expressed by any closed form probability density function. Here, we propose a novel modeling scheme which is as unified as possible to cover all these problems. Therefore we study the performance analysis of our unifying particle filtering methodology on non-stationary Alpha Stable process modeling. It is well known that the probability density functions of these processes cannot be expressed in closed form, except for ...

Gencaga, Deniz — Bogazici University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.