Confidence Measures for Speech/Speaker Recognition and Applications on Turkish LVCSR (2004)
Hierarchical Language Modeling for One-Stage Stochastic Interpretation of Natural Speech
The thesis deals with automatic interpretation of naturally spoken utterances for limited-domain applications. Specifically, the problem is examined by means of a dialogue system for an airport information application. In contrast to traditional two-stage systems, speech recognition and semantic processing are tightly coupled. This avoids interpretation errors due to early decisions. The presented one-stage decoding approach utilizes a uniform, stochastic knowledge representation based on weighted transition network hierarchies, which describe phonemes, words, word classes and semantic concepts. A robust semantic model, which is estimated by combination of data-driven and rule-based approaches, is part of this representation. The investigation of this hierarchical language model is the focus of this work. Furthermore, methods for modeling out-of-vocabulary words and for evaluating semantic trees are introduced.
Thomae, Matthias — Technische Universität München
Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...
Bahari, Mohamad Hasan — KU Leuven
Deep Learning for i-Vector Speaker and Language Recognition
Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without ...
Ghahabi, Omid — Universitat Politecnica de Catalunya
Discrete-time speech processing with application to emotion recognition
The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...
Kotti, Margarita — Aristotle University of Thessaloniki
Turkish, being an agglutinative language with rich morphology, presents challenges for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. First, the agglutinative nature of Turkish leads to a high number of Out-of Vocabulary (OOV) words which in turn lower Automatic Speech Recognition (ASR) accuracy. Second, Turkish has a relatively free word order that leads to non-robust language model estimates. These challenges have been mostly handled by using meaningful segmentations of words, called sub-lexical units, in language modeling. However, a shortcoming of sub-lexical units is over-generation which needs to be dealt with for higher accuracies. This dissertation aims to address the challenges of Turkish in LVCSR. Grammatical and statistical sub-lexical units for language modeling are investigated and they yield substantial improvements over the word language models. Our novel approach inspired by dynamic vocabulary adaptation mostly recovers the errors caused by over-generation and ...
Arisoy, Ebru — Bogazici University
Modelling context in automatic speech recognition
Speech is at the core of human communication. Speaking and listing comes so natural to us that we do not have to think about it at all. The underlying cognitive processes are very rapid and almost completely subconscious. It is hard, if not impossible not to understand speech. For computers on the other hand, recognising speech is a daunting task. It has to deal with a large number of different voices "influenced, among other things, by emotion, moods and fatigue" the acoustic properties of different environments, dialects, a huge vocabulary and an unlimited creativity of speakers to combine words and to break the rules of grammar. Almost all existing automatic speech recognisers use statistics over speech sounds "what is the probability that a piece of audio is an a-sound" and statistics over word combinations to deal with this complexity. The ...
Wiggers, Pascal — Delft University of Technology
Forensic Evaluation of the Evidence Using Automatic Speaker Recognition Systems
This Thesis is focused on the use of automatic speaker recognition systems for forensic identification, in what is called forensic automatic speaker recognition. More generally, forensic identification aims at individualization, defined as the certainty of distinguishing an object or person from any other in a given population. This objective is followed by the analysis of the forensic evidence, understood as the comparison between two samples of material, such as glass, blood, speech, etc. An automatic speaker recognition system can be used in order to perform such comparison between some recovered speech material of questioned origin (e.g., an incriminating wire-tapping) and some control speech material coming from a suspect (e.g., recordings acquired in police facilities). However, the evaluation of such evidence is not a trivial issue at all. In fact, the debate about the presentation of forensic evidence in a court ...
Ramos, Daniel — Universidad Autonoma de Madrid
Deep Learning-based Speaker Verification In Real Conditions
Smart applications like speaker verification have become essential in verifying the user's identity for availing of personal assistants or online banking services based on the user's voice characteristics. However, far-field or distant speaker verification is constantly affected by surrounding noises which can severely distort the speech signal. Moreover, speech signals propagating in long-range get reflected by various objects in the surrounding area, which creates reverberation and further degrades the signal quality. This PhD thesis explores deep learning-based multichannel speech enhancement techniques to improve the performance of speaker verification systems in real conditions. Multichannel speech enhancement aims to enhance distorted speech using multiple microphones. It has become crucial to many smart devices, which are flexible and convenient for speech applications. Three novel approaches are proposed to improve the robustness of speaker verification systems in noisy and reverberated conditions. Firstly, we integrate ...
Dowerah Sandipana — Universite de Lorraine, CNRS, Inria, Loria
Models and Software Realization of Russian Speech Recognition based on Morphemic Analysis
Above 20% European citizens speak in Russian therefore the task of automatic recognition of Russian continuous speech has a key significance. The main problems of ASR are connected with the complex mechanism of Russian word-formation. Totally there exist above 3 million diverse valid word-forms that is very large vocabulary ASR task. The thesis presents the novel HMM-based ASR model of Russian that has morphemic levels of speech and language representation. The model includes the developed methods for decomposition of the word vocabulary into morphemes and acoustical and statistical language modelling at the training stage and the method for word synthesis at the last stage of speech decoding. The presented results of application of the ASR model for voice access to the Yellow Pages directory have shown the essential improvement (above 75%) of the real-time factor saving acceptable word recognition rate ...
Karpov, Alexey — St.Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences
Prediction and Optimization of Speech Intelligibility in Adverse Conditions
In digital speech-communication systems like mobile phones, public address systems and hearing aids, conveying the message is one of the most important goals. This can be challenging since the intelligibility of the speech may be harmed at various stages before, during and after the transmission process from sender to receiver. Causes which create such adverse conditions include background noise, an unreliable internet connection during a Skype conversation or a hearing impairment of the receiver. To overcome this, many speech-communication systems include speech processing algorithms to compensate for these signal degradations like noise reduction. To determine the effect on speech intelligibility of these signal processing based solutions, the speech signal has to be evaluated by means of a listening test with human listeners. However, such tests are costly and time consuming. As an alternative, reliable and fast machine-driven intelligibility predictors are ...
Taal, Cees — Delft University of Technology
This thesis presents a system for the interpretation of natural speech which serves as input module for a spoken dialog system. It carries out the task of extracting application-specific pieces of information from the user utterance in order to pass them to the control module of the dialog system. By following the approach of integrating speech recognition and speech interpretation, the system is able to determine the spoken word sequence together with the hierarchical utterance structure that is necessary for the extraction of information directly from the recorded speech signal. The efficient implementation of the underlying decoder is based on the powerful tool of weighted finite state transducers (WFSTs). This tool allows to compile all involved knowledge sources into an optimized network representation of the search space which is constructed dynamically during the ongoing decoding process. In addition to the ...
Lieb, Robert — Technische Universität München
Robust Speech Recognition: Analysis and Equalization of Lombard Effect in Czech Corpora
When exposed to noise, speakers will modify the way they speak in an effort to maintain intelligible communication. This process, which is referred to as Lombard effect (LE), involves a combination of both conscious and subconscious articulatory adjustment. Speech production variations due to LE can cause considerable degradation in automatic speech recognition (ASR) since they introduce a mismatch between parameters of the speech to be recognized and the ASR system’s acoustic models, which are usually trained on neutral speech. The main objective of this thesis is to analyze the impact of LE on speech production and to propose methods that increase ASR system performance in LE. All presented experiments were conducted on the Czech spoken language, yet, the proposed concepts are assumed applicable to other languages. The first part of the thesis focuses on the design and acquisition of a ...
Boril, Hynek — Czech Technical University in Prague
Cross-Lingual Voice Conversion
Cross-lingual voice conversion refers to the automatic transformation of a source speaker’s voice to a target speaker’s voice in a language that the target speaker can not speak. It involves a set of statistical analysis, pattern recognition, machine learning, and signal processing techniques. This study focuses on the problems related to cross-lingual voice conversion by discussing open research questions, presenting new methods, and performing comparisons with the state-of-the-art techniques. In the training stage, a Phonetic Hidden Markov Model based automatic segmentation and alignment method is developed for cross-lingual applications which support textindependent and text-dependent modes. Vocal tract transformation function is estimated using weighted speech frame mapping in more detail. Adjusting the weights, similarity to target voice and output quality can be balanced depending on the requirements of the cross- lingual voice conversion application. A context-matching algorithm is developed to reduce ...
Turk, Oytun — Bogazici University
Probabilistic Model-Based Multiple Pitch Tracking of Speech
Multiple pitch tracking of speech is an important task for the segregation of multiple speakers in a single-channel recording. In this thesis, a probabilistic model-based approach for estimation and tracking of multiple pitch trajectories is proposed. A probabilistic model that captures pitch-dependent characteristics of the single-speaker short-time spectrum is obtained a priori from clean speech data. The resulting speaker model, which is based on Gaussian mixture models, can be trained either in a speaker independent (SI) or a speaker dependent (SD) fashion. Speaker models are then combined using an interaction model to obtain a probabilistic description of the observed speech mixture. A factorial hidden Markov model is applied for tracking the pitch trajectories of multiple speakers over time. The probabilistic model-based approach is capable to explicitly incorporate timbral information and all associated uncertainties of spectral structure into the model. While ...
Wohlmayr, Michael — Graz University of Technology
Non-intrusive Quality Evaluation of Speech Processed in Noisy and Reverberant Environments
In many speech applications such as hands-free telephony or voice-controlled home assistants, the distance between the user and the recording microphones can be relatively large. In such a far-field scenario, the recorded microphone signals are typically corrupted by noise and reverberation, which may severely degrade the performance of speech recognition systems and reduce intelligibility and quality of speech in communication applications. In order to limit these effects, speech enhancement algorithms are typically applied. The main objective of this thesis is to develop novel speech enhancement algorithms for noisy and reverberant environments and signal-based measures to evaluate these algorithms, focusing on solutions that are applicable in realistic scenarios. First, we propose a single-channel speech enhancement algorithm for joint noise and reverberation reduction. The proposed algorithm uses a spectral gain to enhance the input signal, where the gain is computed using a ...
Cauchi, Benjamin — University of Oldenburg
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.