Facial Soft Biometrics: Methods, Applications and Solutions

This dissertation studies soft biometrics traits, their applicability in different security and commercial scenarios, as well as related usability aspects. We place the emphasis on human facial soft biometric traits which constitute the set of physical, adhered or behavioral human characteristics that can partially differentiate, classify and identify humans. Such traits, which include characteristics like age, gender, skin and eye color, the presence of glasses, moustache or beard, inherit several advantages such as ease of acquisition, as well as a natural compatibility with how humans perceive their surroundings. Specifically, soft biometric traits are compatible with the human process of classifying and recalling our environment, a process which involves constructions of hierarchical structures of different refined traits. This thesis explores these traits, and their application in soft biometric systems (SBSs), and specifically focuses on how such systems can achieve different goals ...

Dantcheva, Antitza — EURECOM / Telecom ParisTech


Dialogue Enhancement and Personalization - Contributions to Quality Assessment and Control

The production and delivery of audio for television involve many creative and technical challenges. One of them is concerned with the level balance between the foreground speech (also referred to as dialogue) and the background elements, e.g., music, sound effects, and ambient sounds. Background elements are fundamental for the narrative and for creating an engaging atmosphere, but they can mask the dialogue, which the audience wishes to follow in a comfortable way. Very different individual factors of the people in the audience clash with the creative freedom of the content creators. As a result, service providers receive regular complaints about difficulties in understanding the dialogue because of too loud background sounds. While this has been a known issue for at least three decades, works analyzing the problem and up-to-date statics were scarce before the contributions in this work. Enabling the ...

Torcoli, Matteo — Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


A comparative analysis of different approaches to target differentiation and localization using infrared sensors

This study compares the performances of various techniques for the differentiation and localization of commonly encountered features in indoor environments, such as planes, corners, edges, and cylinders, possibly with different surface properties, using simple infrared sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and differentiation process. The techniques considered include rule-based, template-based, and neural network-based target differentiation, parametric surface differentiation, and statistical pattern recognition techniques such as parametric density estimation, various linear and quadratic classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial neural network, and support vector machine classifiers. The geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor ...

Aytac, Tayfun — Bilkent University


Image quality in context

An analysis of the ergonomic quality of the current standards for the visual display quality leads to a number of recommendations for the development of new international standards: - Separation for different types of users, esp. display designers, purchasers, and end users, -Independence of display technology to allow comparison, -Modular construction with several quality grades to allow benchmarking for different types of applications, -A test method for the end user standard that can be performed at the place of work, to take into account the effects of wear and drift of components and to be able to correct suboptimal configurations. The separate parameters that exert influence on the image quality of a broad category of images in the context of use, and their mutual coherence within the cycle of evaluation and adaptation of image quality are presented in the "Image ...

Besuijen, Jacobus — Delft University of Technology


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Kernel PCA and Pre-Image Iterations for Speech Enhancement

In this thesis, we present novel methods to enhance speech corrupted by noise. All methods are based on the processing of complex-valued spectral data. First, kernel principal component analysis (PCA) for speech enhancement is proposed. Subsequently, a simplification of kernel PCA, called pre-image iterations (PI), is derived. This method computes enhanced feature vectors iteratively by linear combination of noisy feature vectors. The weighting for the linear combination is found by a kernel function that measures the similarity between the feature vectors. The kernel variance is a key parameter for the degree of de-noising and has to be set according to the signal-to-noise ratio (SNR). Initially, PI were proposed for speech corrupted by additive white Gaussian noise. To be independent of knowledge about the SNR and to generalize to other stationary noise types, PI are extended by automatic determination of the ...

Leitner, Christina — Graz University of Technology


Artificial Bandwidth Extension of Telephone Speech Signals Using Phonetic A Priori Knowledge

The narrowband frequency range of telephone speech signals originally caused by former analog transmission techniques still leads to frequent acoustical limitations in today’s digital telephony systems. It provokes muffled sounding phone calls with reduced speech intelligibility and quality. By means of artificial speech bandwidth extension approaches, missing frequency components can be estimated and reconstructed. However, the artificially extended speech bandwidth typically suffers from annoying artifacts. Particularly susceptible to this are the fricatives /s/ and /z/. They can hardly be estimated based on the narrowband spectrum and are therefore easily confusable with other phonemes as well as speech pauses. This work takes advantage of phonetic a priori knowledge to optimize the performance of artificial bandwidth extension. Both the offline training part conducted in advance and the main processing part performed later on shall be thereby provided with important phoneme information. As ...

Bauer, Patrick Marcel — Institute for Communications Technology, Technical University Braunschweig


Geometric Approach to Statistical Learning Theory through Support Vector Machines (SVM) with Application to Medical Diagnosis

This thesis deals with problems of Pattern Recognition in the framework of Machine Learning (ML) and, specifically, Statistical Learning Theory (SLT), using Support Vector Machines (SVMs). The focus of this work is on the geometric interpretation of SVMs, which is accomplished through the notion of Reduced Convex Hulls (RCHs), and its impact on the derivation of new, efficient algorithms for the solution of the general SVM optimization task. The contributions of this work is the extension of the mathematical framework of RCHs, the derivation of novel geometric algorithms for SVMs and, finally, the application of the SVM algorithms to the field of Medical Image Analysis and Diagnosis (Mammography). Geometric SVM Framework's extensions: The geometric interpretation of SVMs is based on the notion of Reduced Convex Hulls. Although the geometric approach to SVMs is very intuitive, its usefulness was restricted by ...

Mavroforakis, Michael — University of Athens


Radial Basis Function Network Robust Learning Algorithms in Computer Vision Applications

This thesis introduces new learning algorithms for Radial Basis Function (RBF) networks. RBF networks is a feed-forward two-layer neural network used for functional approximation or pattern classification applications. The proposed training algorithms are based on robust statistics. Their theoretical performance has been assessed and compared with that of classical algorithms for training RBF networks. The applications of RBF networks described in this thesis consist of simultaneously modeling moving object segmentation and optical flow estimation in image sequences and 3-D image modeling and segmentation. A Bayesian classifier model is used for the representation of the image sequence and 3-D images. This employs an energy based description of the probability functions involved. The energy functions are represented by RBF networks whose inputs are various features drawn from the images and whose outputs are objects. The hidden units embed kernel functions. Each kernel ...

Bors, Adrian G. — Aristotle University of Thessaloniki


Automated Face Recognition from Low-resolution Imagery

Recently, significant advances in the field of automated face recognition have been achieved using computer vision, machine learning, and deep learning methodologies. However, despite claims of super-human performance of face recognition algorithms on select key benchmark tasks, there remain several open problems that preclude the general replacement of human face recognition work with automated systems. State-of-the-art automated face recognition systems based on deep learning methods are able to achieve high accuracy when the face images they are tasked with recognizing subjects from are of sufficiently high quality. However, low image resolution remains one of the principal obstacles to face recognition systems, and their performance in the low-resolution regime is decidedly below human capabilities. In this PhD thesis, we present a systematic study of modern automated face recognition systems in the presence of image degradation in various forms. Based on our ...

Grm, Klemen — University of Ljubljana


Dynamic Scheme Selection in Image Coding

This thesis deals with the coding of images with multiple coding schemes and their dynamic selection. In our society of information highways, electronic communication is taking everyday a bigger place in our lives. The number of transmitted images is also increasing everyday. Therefore, research on image compression is still an active area. However, the current trend is to add several functionalities to the compression scheme such as progressiveness for more comfortable browsing of web-sites or databases. Classical image coding schemes have a rigid structure. They usually process an image as a whole and treat the pixels as a simple signal with no particular characteristics. Second generation schemes use the concept of objects in an image, and introduce a model of the human visual system in the design of the coding scheme. Dynamic coding schemes, as their name tells us, make ...

Fleury, Pascal — Swiss Federal Institute of Technology


Vision models and quality metrics for image processing applications

Optimizing the performance of digital imaging systems with respect to the capture, display, storage and transmission of visual information represents one of the biggest challenges in the field of image and video processing. Taking into account the way humans perceive visual information can be greatly beneficial for this task. To achieve this, it is necessary to understand and model the human visual system, which is also the principal goal of this thesis. Computational models for different aspects of the visual system are developed, which can be used in a wide variety of image and video processing applications. The proposed models and metrics are shown to be consistent with human perception. The focus of this work is visual quality assessment. A perceptual distortion metric (PDM) for the evaluation of video quality is presented. It is based on a model of the ...

Winkler, Stefan — Swiss Federal Institute of Technology


Human-Centered Content-Based Image Retrieval

Retrieval of images that lack a (suitable) annotations cannot be achieved through (traditional) Information Retrieval (IR) techniques. Access through such collections can be achieved through the application of computer vision techniques on the IR problem, which is baptized Content-Based Image Retrieval (CBIR). In contrast with most purely technological approaches, the thesis Human-Centered Content-Based Image Retrieval approaches the problem from a human/user centered perspective. Psychophysical experiments were conducted in which people were asked to categorize colors. The data gathered from these experiments was fed to a Fast Exact Euclidean Distance (FEED) transform (Schouten & Van den Broek, 2004), which enabled the segmentation of color space based on human perception (Van den Broek et al., 2008). This unique color space segementation was exploited for texture analysis and image segmentation, and subsequently for full-featured CBIR. In addition, a unique CBIR-benchmark was developed (Van ...

van den Broek, Egon L. — Radboud University Nijmegen


Camera based motion estimation and recognition for human-computer interaction

Communicating with mobile devices has become an unavoidable part of our daily life. Unfortunately, the current user interface designs are mostly taken directly from desktop computers. This has resulted in devices that are sometimes hard to use. Since more processing power and new sensing technologies are already available, there is a possibility to develop systems to communicate through different modalities. This thesis proposes some novel computer vision approaches, including head tracking, object motion analysis and device ego-motion estimation, to allow efficient interaction with mobile devices. For head tracking, two new methods have been developed. The first method detects a face region and facial features by employing skin detection, morphology, and a geometrical face model. The second method, designed especially for mobile use, detects the face and eyes using local texture features. In both cases, Kalman filtering is applied to estimate ...

Hannuksela, Jari — University of Oulou

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.