Object Recognition in Subspaces: Applications in Biometry and 3D Model Retrieval (2009)
Automatic Analysis of Head and Facial Gestures in Video Streams
Automatic analysis of head gestures and facial expressions is a challenging research area and it has significant applications for intelligent human-computer interfaces. An important task is the automatic classification of non-verbal messages composed of facial signals where both facial expressions and head rotations are observed. This is a challenging task, because there is no definite grammar or code-book for mapping the non-verbal facial signals into a corresponding mental state. Furthermore, non-verbal facial signals and the observed emotions have dependency on personality, society, state of the mood and also the context in which they are displayed or observed. This thesis mainly addresses the three desired tasks for an effective visual information based automatic face and head gesture (FHG) analyzer. First we develop a fully automatic, robust and accurate 17-point facial landmark localizer based on local appearance information and structural information of ...
Cinar Akakin, Hatice — Bogazici University
Three-Dimensional Face Recognition
In this thesis, we attack the problem of identifying humans from their three dimensional facial characteristics. For this purpose, a complete 3D face recognition system is developed. We divide the whole system into sub-processes. These sub-processes can be categorized as follows: 1) registration, 2) representation of faces, 3) extraction of discriminative features, and 4) fusion of matchers. For each module, we evaluate the state-of-the art methods, and also propose novel ones. For the registration task, we propose to use a generic face model which speeds up the correspondence establishment process. We compare the benefits of rigid and non-rigid registration schemes using a generic face model. In terms of face representation schemes, we implement a diverse range of approaches such as point clouds, curvature-based descriptors, and range images. In relation to these, various feature extraction methods are used to determine the ...
Gokberk, Berk — Bogazici University
Biologically Inspired 3D Face Recognition
Face recognition has been an active area of study for both computer vision and image processing communities, not only for biometrics but also for human-computer interaction applications. The purpose of the present work is to evaluate the existing 3D face recognition techniques and seek biologically motivated methods to improve them. We especially look at findings in psychophysics and cognitive science for insights. We propose a biologically motivated computational model, and focus on the earlier stages of the model, whose performance is critical for the later stages. Our emphasis is on automatic localization of facial features. We first propose a strong unsupervised learning algorithm for flexible and automatic training of Gaussian mixture models and use it in a novel feature-based algorithm for facial fiducial point localization. We also propose a novel structural correction algorithm to evaluate the quality of landmarking and ...
Salah, Albert Ali — Bogazici University
A Robust Face Recognition Algorithm for Real-World Applications
Face recognition is one of the most challenging problems of computer vision and pattern recognition. The difficulty in face recognition arises mainly from facial appearance variations caused by factors, such as expression, illumination, partial face occlusion, and time gap between training and testing data capture. Moreover, the performance of face recognition algorithms heavily depends on prior facial feature localization step. That is, face images need to be aligned very well before they are fed into a face recognition algorithm, which requires precise facial feature localization. This thesis addresses on solving these two main problems -facial appearance variations due to changes in expression, illumination, occlusion, time gap, and imprecise face alignment due to mislocalized facial features- in order to accomplish its goal of building a generic face recognition algorithm that can function reliably under real-world conditions. The proposed face recognition algorithm ...
Ekenel, Hazim Kemal — University of Karlsruhe
Three Dimensional Human Face Acquisition for Recognition
Machine identification and recognition of human faces is a rapidly growing research area in both the academic and commercial world. Most of the research to date has concentrated on the use of two dimensional information, acquired from video cameras or photographs. The use of a three dimensional system is hoped to remove many of the problems affecting the two dimensional systems such as disruption caused by changes in the face’s orientation or changes in the ambient lighting. A three dimensional system will obviously not be influenced by orientation changes and the lighting is irrelevant, as it is the shape not the shading of the face that is important. For this system to be of practical use it is important that the process of acquiring the necessary information to generate the three dimensional surface model should not require any complex or ...
Tibbalds, Adam D. — University of Cambridge
Contactless and less-constrained palmprint recognition
Biometric systems consist in the combination of devices, algorithms, and procedures used to recognize the individuals based on the characteristics, physical or behavioral, of their persons. These characteristics are called biometric traits. Nowadays, biometric technologies are becoming more and more widespread, and many people use biometric systems daily. However, in some cases the procedures used for the collection of the biometric traits need the cooperation of the user, controlled environments, illuminations perceived as unpleasant, too strong, or harmful, or the contact of the body with a sensor. For these reasons, techniques for the contactless and less-constrained biometric recognition are being researched, in order to increase the usability and social acceptance of biometric systems, and increase the fields of application of biometric technologies. In this context, the palmprint is a biometric trait whose acquisition is generally well accepted by the users. ...
Genovese, Angelo — Università degli Studi di Milano
Face recognition, a landmarks tale
Face recognition is a technology that appeals to the imagination of many people. This is particularly reflected in the popularity of science-fiction films and forensic detective series such as CSI, CSI New York, CSI Miami, Bones and NCIS. Although these series tend to be set in the present, their application of face recognition should be considered science-fiction. The successes are not, or at least not yet, realistic. This does, however, not mean that it does not, or will never, work. To the contrary, face recognition is used in places where the user does not need or want to cooperate, for example entry to stadiums or stations, or the detection of double entries into databases. Another important reason to use face recognition is that it can be a user-friendly biometric security. Face recognition works reliably and robustly when there is little ...
Beumer, Gert M. — University of Twente
Video person recognition strategies using head motion and facial appearance
In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...
Matta, Federico — Eurécom / Multimedia communications
Three dimensional shape modeling: segmentation, reconstruction and registration
Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...
Li, Jia — University of Michigan
Improvements in Pose Invariance and Local Description for Gabor-based 2D Face Recognition
Automatic face recognition has attracted a lot of attention not only because of the large number of practical applications where human identification is needed but also due to the technical challenges involved in this problem: large variability in facial appearance, non-linearity of face manifolds and high dimensionality are some the most critical handicaps. In order to deal with the above mentioned challenges, there are two possible strategies: the first is to construct a “good” feature space in which the manifolds become simpler (more linear and more convex). This scheme usually comprises two levels of processing: (1) normalize images geometrically and photometrically and (2) extract features that are stable with respect to these variations (such as those based on Gabor filters). The second strategy is to use classification structures that are able to deal with non-linearities and to generalize properly. To ...
Gonzalez-Jimenez, Daniel — University of Vigo
Camera based motion estimation and recognition for human-computer interaction
Communicating with mobile devices has become an unavoidable part of our daily life. Unfortunately, the current user interface designs are mostly taken directly from desktop computers. This has resulted in devices that are sometimes hard to use. Since more processing power and new sensing technologies are already available, there is a possibility to develop systems to communicate through different modalities. This thesis proposes some novel computer vision approaches, including head tracking, object motion analysis and device ego-motion estimation, to allow efficient interaction with mobile devices. For head tracking, two new methods have been developed. The first method detects a face region and facial features by employing skin detection, morphology, and a geometrical face model. The second method, designed especially for mobile use, detects the face and eyes using local texture features. In both cases, Kalman filtering is applied to estimate ...
Hannuksela, Jari — University of Oulou
Automated Face Recognition from Low-resolution Imagery
Recently, significant advances in the field of automated face recognition have been achieved using computer vision, machine learning, and deep learning methodologies. However, despite claims of super-human performance of face recognition algorithms on select key benchmark tasks, there remain several open problems that preclude the general replacement of human face recognition work with automated systems. State-of-the-art automated face recognition systems based on deep learning methods are able to achieve high accuracy when the face images they are tasked with recognizing subjects from are of sufficiently high quality. However, low image resolution remains one of the principal obstacles to face recognition systems, and their performance in the low-resolution regime is decidedly below human capabilities. In this PhD thesis, we present a systematic study of modern automated face recognition systems in the presence of image degradation in various forms. Based on our ...
Grm, Klemen — University of Ljubljana
Representation Learning and Information Fusion: Applications in Biomedical Image Processing
In recent years Machine Learning and in particular Deep Learning have excelled in object recognition and classification tasks in computer vision. As these methods extract features from the data itself by learning features that are relevant for a particular task, a key aspect of this remarkable success is the amount of data on which these methods train. Biomedical applications face the problem that the amount of training data is limited. In particular, labels and annotations are usually scarce and expensive to obtain as they require biological or medical expertise. One way to overcome this issue is to use additional knowledge about the data at hand. This guidance can come from expert knowledge, which puts focus on specific, relevant characteristics in the images, or geometric priors which can be used to exploit the spatial relationships in the images. This thesis presents ...
Elisabeth Wetzer — Uppsala University
This thesis addresses the problem of vision based sign language recognition and focuses on three main tasks to design improved techniques that increase the performance of sign language recognition systems. We first attack the markerless tracking problem during natural and unrestricted signing in less restricted environments. We propose a joint particle filter approach for tracking multiple identical objects, in our case the two hands and the face, which is robust to situations including fast movement, interactions and occlusions. Our experiments show that the proposed approach has a robust tracking performance during the challenging situations and is suitable for tracking long durations of signing with its ability of fast recovery. Second, we attack the problem of the recognition of signs that include both manual (hand gestures) and non-manual (head/body gestures) components. We investigated multi-modal fusion techniques to model the different temporal ...
Aran, Oya — Bogazici University
3D motion capture by computer vision and virtual rendering
Networked 3D virtual environments allow multiple users to interact with each other over the Internet. Users can share some sense of telepresence by remotely animating an avatar that represents them. However, avatar control may be tedious and still render user gestures poorly. This work aims at animating a user‟s avatar from real time 3D motion capture by monoscopic computer vision, thus allowing virtual telepresence to anyone using a personal computer with a webcam. The approach followed consists of registering a 3D articulated upper-body model to a video sequence. This involves searching iteratively for the best match between features extracted from the 3D model and from the image. A two-step registration process matches regions and then edges. The first contribution of this thesis is a method of allocating computing iterations under real-time constrain that achieves optimal robustness and accuracy. The major ...
Gomez Jauregui, David Antonio — Telecom SudParis
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.