Biologically Inspired 3D Face Recognition

Face recognition has been an active area of study for both computer vision and image processing communities, not only for biometrics but also for human-computer interaction applications. The purpose of the present work is to evaluate the existing 3D face recognition techniques and seek biologically motivated methods to improve them. We especially look at findings in psychophysics and cognitive science for insights. We propose a biologically motivated computational model, and focus on the earlier stages of the model, whose performance is critical for the later stages. Our emphasis is on automatic localization of facial features. We first propose a strong unsupervised learning algorithm for flexible and automatic training of Gaussian mixture models and use it in a novel feature-based algorithm for facial fiducial point localization. We also propose a novel structural correction algorithm to evaluate the quality of landmarking and ...

Salah, Albert Ali — Bogazici University


Automatic Analysis of Head and Facial Gestures in Video Streams

Automatic analysis of head gestures and facial expressions is a challenging research area and it has significant applications for intelligent human-computer interfaces. An important task is the automatic classification of non-verbal messages composed of facial signals where both facial expressions and head rotations are observed. This is a challenging task, because there is no definite grammar or code-book for mapping the non-verbal facial signals into a corresponding mental state. Furthermore, non-verbal facial signals and the observed emotions have dependency on personality, society, state of the mood and also the context in which they are displayed or observed. This thesis mainly addresses the three desired tasks for an effective visual information based automatic face and head gesture (FHG) analyzer. First we develop a fully automatic, robust and accurate 17-point facial landmark localizer based on local appearance information and structural information of ...

Cinar Akakin, Hatice — Bogazici University


Three-Dimensional Face Recognition

In this thesis, we attack the problem of identifying humans from their three dimensional facial characteristics. For this purpose, a complete 3D face recognition system is developed. We divide the whole system into sub-processes. These sub-processes can be categorized as follows: 1) registration, 2) representation of faces, 3) extraction of discriminative features, and 4) fusion of matchers. For each module, we evaluate the state-of-the art methods, and also propose novel ones. For the registration task, we propose to use a generic face model which speeds up the correspondence establishment process. We compare the benefits of rigid and non-rigid registration schemes using a generic face model. In terms of face representation schemes, we implement a diverse range of approaches such as point clouds, curvature-based descriptors, and range images. In relation to these, various feature extraction methods are used to determine the ...

Gokberk, Berk — Bogazici University


A Robust Face Recognition Algorithm for Real-World Applications

Face recognition is one of the most challenging problems of computer vision and pattern recognition. The difficulty in face recognition arises mainly from facial appearance variations caused by factors, such as expression, illumination, partial face occlusion, and time gap between training and testing data capture. Moreover, the performance of face recognition algorithms heavily depends on prior facial feature localization step. That is, face images need to be aligned very well before they are fed into a face recognition algorithm, which requires precise facial feature localization. This thesis addresses on solving these two main problems -facial appearance variations due to changes in expression, illumination, occlusion, time gap, and imprecise face alignment due to mislocalized facial features- in order to accomplish its goal of building a generic face recognition algorithm that can function reliably under real-world conditions. The proposed face recognition algorithm ...

Ekenel, Hazim Kemal — University of Karlsruhe


Three Dimensional Human Face Acquisition for Recognition

Machine identification and recognition of human faces is a rapidly growing research area in both the academic and commercial world. Most of the research to date has concentrated on the use of two dimensional information, acquired from video cameras or photographs. The use of a three dimensional system is hoped to remove many of the problems affecting the two dimensional systems such as disruption caused by changes in the face’s orientation or changes in the ambient lighting. A three dimensional system will obviously not be influenced by orientation changes and the lighting is irrelevant, as it is the shape not the shading of the face that is important. For this system to be of practical use it is important that the process of acquiring the necessary information to generate the three dimensional surface model should not require any complex or ...

Tibbalds, Adam D. — University of Cambridge


Face recognition, a landmarks tale

Face recognition is a technology that appeals to the imagination of many people. This is particularly reflected in the popularity of science-fiction films and forensic detective series such as CSI, CSI New York, CSI Miami, Bones and NCIS. Although these series tend to be set in the present, their application of face recognition should be considered science-fiction. The successes are not, or at least not yet, realistic. This does, however, not mean that it does not, or will never, work. To the contrary, face recognition is used in places where the user does not need or want to cooperate, for example entry to stadiums or stations, or the detection of double entries into databases. Another important reason to use face recognition is that it can be a user-friendly biometric security. Face recognition works reliably and robustly when there is little ...

Beumer, Gert M. — University of Twente


Contactless and less-constrained palmprint recognition

Biometric systems consist in the combination of devices, algorithms, and procedures used to recognize the individuals based on the characteristics, physical or behavioral, of their persons. These characteristics are called biometric traits. Nowadays, biometric technologies are becoming more and more widespread, and many people use biometric systems daily. However, in some cases the procedures used for the collection of the biometric traits need the cooperation of the user, controlled environments, illuminations perceived as unpleasant, too strong, or harmful, or the contact of the body with a sensor. For these reasons, techniques for the contactless and less-constrained biometric recognition are being researched, in order to increase the usability and social acceptance of biometric systems, and increase the fields of application of biometric technologies. In this context, the palmprint is a biometric trait whose acquisition is generally well accepted by the users. ...

Genovese, Angelo — Università degli Studi di Milano


Vision Based Sign Language Recognition: Modeling and Recognizing Isolated Signs With Manual and Non-manual Components

This thesis addresses the problem of vision based sign language recognition and focuses on three main tasks to design improved techniques that increase the performance of sign language recognition systems. We first attack the markerless tracking problem during natural and unrestricted signing in less restricted environments. We propose a joint particle filter approach for tracking multiple identical objects, in our case the two hands and the face, which is robust to situations including fast movement, interactions and occlusions. Our experiments show that the proposed approach has a robust tracking performance during the challenging situations and is suitable for tracking long durations of signing with its ability of fast recovery. Second, we attack the problem of the recognition of signs that include both manual (hand gestures) and non-manual (head/body gestures) components. We investigated multi-modal fusion techniques to model the different temporal ...

Aran, Oya — Bogazici University


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Face Recognition Robust to Occlusions

Face recognition is an important technology in computer vision, which often acts as an essential component in biometrics systems, HCI systems, access control systems, multimedia indexing applications, etc. In recent years, identification of subjects in non-controlled scenarios has received large amount of attentions from the biometrics research community. The deployment of real-time and robust face recognition systems can significantly reinforce the safety and security in public places or/and private residences. However, variations due to expressions/illuminations/poses/occlusions can significantly deteriorate the performance of face recognition systems in non-controlled environments. Partial occlusion, which significantly changes the appearance of part of a face, cannot only cause large performance deterioration of face recognition, but also can cause severe security issues. In this thesis, we focus on the occlusion problem in automatic face recognition in noncontrolled environments. Toward this goal, we propose a framework that consists ...

Min, Rui — Telecom ParisTech


Automated Face Recognition from Low-resolution Imagery

Recently, significant advances in the field of automated face recognition have been achieved using computer vision, machine learning, and deep learning methodologies. However, despite claims of super-human performance of face recognition algorithms on select key benchmark tasks, there remain several open problems that preclude the general replacement of human face recognition work with automated systems. State-of-the-art automated face recognition systems based on deep learning methods are able to achieve high accuracy when the face images they are tasked with recognizing subjects from are of sufficiently high quality. However, low image resolution remains one of the principal obstacles to face recognition systems, and their performance in the low-resolution regime is decidedly below human capabilities. In this PhD thesis, we present a systematic study of modern automated face recognition systems in the presence of image degradation in various forms. Based on our ...

Grm, Klemen — University of Ljubljana


Density-based shape descriptors and similarity learning for 3D object retrieval

Next generation search engines will enable query formulations, other than text, relying on visual information encoded in terms of images and shapes. The 3D search technology, in particular, targets specialized application domains ranging from computer aided-design and manufacturing to cultural heritage archival and presentation. Content-based retrieval research aims at developing search engines that would allow users to perform a query by similarity of content. This thesis deals with two fundamentals problems in content-based 3D object retrieval: (1) How to describe a 3D shape to obtain a reliable representative for the subsequent task of similarity search? (2) How to supervise the search process to learn inter-shape similarities for more effective and semantic retrieval? Concerning the first problem, we develop a novel 3D shape description scheme based on probability density of multivariate local surface features. We constructively obtain local characterizations of 3D ...

Akgul, Ceyhun Burak — Bogazici University and Telecom ParisTech


Deep learning for semantic description of visual human traits

The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...

Antipov, Grigory — Télécom ParisTech (Eurecom)


Good Features to Correlate for Visual Tracking

Estimating object motion is one of the key components of video processing and the first step in applications which require video representation. Visual object tracking is one way of extracting this component, and it is one of the major problems in the field of computer vision. Numerous discriminative and generative machine learning approaches have been employed to solve this problem. Recently, correlation filter based (CFB) approaches have been popular due to their computational efficiency and notable performances on benchmark datasets. The ultimate goal of CFB approaches is to find a filter (i.e., template) which can produce high correlation outputs around the actual object location and low correlation outputs around the locations that are far from the object. Nevertheless, CFB visual tracking methods suffer from many challenges, such as occlusion, abrupt appearance changes, fast motion and object deformation. The main reasons ...

Gundogdu, Erhan — Middle East Technical University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.