Non-Coherent Communication in Multiple-Antenna Systems: Receiver Design, Codebook Construction and Capacity Analysis (2008)
Communication Rates for Fading Channels with Imperfect Channel-State Information
An important specificity of wireless communication channels are the rapid fluctuations of propagation coefficients. This effect is called fading and is caused by the motion of obstacles, scatterers and reflectors standing along the different paths of electromagnetic wave propagation between the transmitting and the receiving terminal. These changes in the geometry of the wireless channel prompt the attenuation coefficients and the relative phase shifts between the multiple propagation paths to vary. This suggests to model the channel coefficients (the transfer matrix) as random variables. The present thesis studies information rates for reliable transmission of information over fading channels under the realistic assumption that the receiver has only imperfect knowledge of the random fading state. While the over-idealized assumption of perfect channel-state information at the receiver (CSIR) gives rise to many simple expressions and is fairly well understood, the settings with ...
Pastore, Adriano — Universitat Politècnica de Catalunya
Antenna arrays in wireless communications
We investigate two aspects of multiple-antenna wireless communication systems in this thesis: 1) deployment of an adaptive beamformer array at the receiver; and 2) space-time coding for arrays at the transmitter and the receiver. In the first part of the thesis, we establish sufficient conditions for the convergence of a popular least mean squares (LMS) algorithm known as the sequential Partial Update LMS Algorithm for adaptive beamforming. Partial update LMS (PU-LMS) algorithms are reduced complexity versions of the full update LMS that update a subset of filter coefficients at each iteration. We introduce a new improved algorithm, called Stochastic PU-LMS, which selects the subsets at random at each iteration. We show that the new algorithm converges for a wider class of signals than the existing PU-LMS algorithms. The second part of this thesis deals with the multiple-input multiple-output (MIMO) Shannon ...
Godavarti, Mahesh — University of Michigan
Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in order to increase the performance, spectral efficiency, and reliability. Theoretically, the channel capacity of those systems grows linearly with the number of transmit and receive antennas. An important performance metric beneath capacity is the normalised mean square error (MSE) under the assumption of optimal linear reception. Clearly, both performance measures depend on the properties of the MIMO channel as well as on the considered system approach, e.g. on the type of channel state information which is available at the transmitter. It has been shown that even partial CSI at the transmitter can increase the performance. In this thesis, we analyse the performance and design optimal transmit strategies of singleand multiuser MIMO systems with respect to the statistical properties of the fading channel and under different types of CSI at ...
Jorswieck, Eduard — TU Berlin / Mobile Communications
On MIMO Systems and Adaptive Arrays for Wireless Communication. Analysis and Practical Aspects
This thesis is concerned with the use of multiple antenna elements in wireless communication over frequency non-selective radio channels. Both measurement results and theoretical analysis are presented. New transmit strategies are derived and compared to existing transmit strategies, such as beamforming and space time block coding (STBC). It is found that the best transmission algorithm is largely dependent on the channel characteristics, such as the number of transmit and receive antennas and the existence of a line of sight component. Rayleigh fading multiple input multiple output (MIMO) channels are studied using an eigenvalue analysis and exact expressions for the bit error rates and outage capacities for beamforming and STBC is found. In general are MIMO fading channels correlated and there exists a mutual coupling between antenna elements. These findings are supported by indoor MIMO measurements. It is found that the ...
Wennstram, Mattias — Uppsala University
Impact of channel state information on the analysis and design of multiantenna communication systems
During the last decade, there has been a steady increase in the demand of high data rates that are to be supported by wireless communication applications. Among the different solutions that have been proposed by the research community to cope with this new demand, the utilization of multiple antennas arises as one of the best candidates due to the fact that it provides both an increase in reliability and also in information transmission rate. Although the use of multiple antennas at the receiver side dates back from the sixties, the full potential of multiple antennas at both communication ends has been both theoretically and practically recognized in the last few years. The design of proper multi-antenna communication systems to satisfy the high data rates demand depends not only on the chosen figure of merit or performance metric, but also on ...
Payaró Llisterri, Miquel — Centre Technologic de Telecomunicacions de Catalunya
Phase Noise and Wideband Transmission in Massive MIMO
In the last decades the world has experienced a massive growth in the demand for wireless services. The recent popularity of hand-held devices with data exchange capabilities over wireless networks, such as smartphones and tablets, increased the wireless data traffic even further. This trend is not expected to cease in the foreseeable future. In fact, it is expected to accelerate as everyday apparatus unrelated with data communications, such as vehicles or household devices, are foreseen to be equipped with wireless communication capabilities. Further, the next generation wireless networks should be designed such that they have increased spectral and energy efficiency, provide uniformly good service to all of the accommodated users and handle many more devices simultaneously. Massive multiple-input multiple-output (Massive MIMO) systems, also termed as large-scale MIMO, very large MIMO or full-dimension MIMO, have recently been proposed as a candidate ...
Pitarokoilis, Antonios — Linköping University
Advanced Interference Suppression Techniques for Spread Spectrum Systems
Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...
Yunlong Cai — University of York
Study and optimization of multi-antenna systems associated with multicarrier modulations
Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...
LE NIR, Vincent — INSA de Rennes
Space-Time Block Coding for Multiple Antenna Systems
The demand for mobile communication systems with high data rates has dramatically increased in recent years. New methods are necessary in order to satisfy this huge communications demand, exploiting the limited resources such as bandwidth and power as efficient as possible. MIMO systems with multiple an- tenna elements at both link ends are an efficient solution for future wireless communications systems as they provide high data rates by exploiting the spatial domain under the constraints of limited bandwidth and transmit power. Space-Time Block Coding (STBC) is a MIMO transmit strategy which exploits transmit diversity and high reliability. STBCs can be divided into two main classes, namely, Orthogonal Space-Time Block Codes (OSTBCs) and Non-Orthogonal Space-Time Block Codes (NOSTBCs). The Quasi-Orthogonal Space-Time Block Codes (QSTBCs) belong to class of NOSTBCs and have been an intensive area of research. The OSTBCs achieve full ...
Badic, B. — Vienna University of Technology
Towards Massive Connectivity via Uplink Code-Domain NOMA
Abstract Future mobile networks are envisioned to provide wireless access to a massive number of devices. The substantial increase in connectivity comes mainly from machine-type communication (MTC), for which a large number of low-rate transmissions take place. Accommodating access for such a large number of user equipment (UEs) can be inefficient if applied to current network architectures, which are mainly based on orthogonal multiple access (OMA) and scheduling-based transmissions. This is due to the resulting control overhead and increased access delay. The framework of non-orthogonal multiple access (NOMA) has attracted attention recently as a promising solution to tackle these issues. It allows multiple UEs to access the network simultaneously over the same resources, and provides naturally, the support for grant-free access, in which no explicit scheduling of the UEs is required. Motivated by the potential benefits of NOMA in enabling ...
Bashar Tahir — TU Wien
Statistical Signal Processing for Data Fusion
In this dissertation we focus on statistical signal processing for Data Fusion, with a particular focus on wireless sensor networks. Six topics are studied: (i) Data Fusion for classification under model uncertainty; (ii) Decision Fusion over coherent MIMO channels; (iii) Performance analysis of Maximum Ratio Combining in MIMO decision fusion; (iv) Decision Fusion over non-coherent MIMO channels; (v) Decision Fusion for distributed classification of multiple targets; (vi) Data Fusion for inverse localization problems, with application to wideband passive sonar platform estimation. The first topic of this thesis addresses the problem of lack of knowledge of the prior distribution in classification problems that operate on small data sets that may make the application of Bayes' rule questionable. Uniform or arbitrary priors may provide classification answers that, even in simple examples, may end up contradicting our common sense about the problem. Entropic ...
Ciuonzo, Domenico — Second University of Naples
ACHIEVABLE RATES FOR GAUSSIAN CHANNELS WITH MULTIPLE RELAYS
Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter to code across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector and provides large capacity, and reliability, gains. Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay ...
Del Coso, Aitor — CTTC-Centre Tecnològic de Telecomunicacions de Catalunya
Virtual-MIMO Systems with Compress-and-Forward Cooperation
Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected ...
Jiang, Jing — University of Edinburgh
Computationally Efficient Equalisation of Broadband Multiple-Input Multiple-Output Systems
Multiple-input multiple-output (MIMO) systems are encountered for example in communications if several transmit and receive antennas are empoyed, such that a separate transmit channel exists between every possible pairing of transmitter and receiver antennas. As a results if this spatial diversity, the channel capacity is dramatically increased over the single-inout single-output (SISO) case. While this increase is desired, the use of high data rates requires sophistiocated equalisation and/or detection schemes in the receiver to compensate for spatial and temporal dispersion in broadband MIMO channels, since a time-dispersive, in addition ot spatially-dispersice channel, must be assumed. The estimation of the broadband MIMO channel or its inverse is in general difficult and calls for training sequences that reduce the slot time for the transmission of actual data, which may counteract the promised gain in channel capacity. Another problem can be the computational ...
Bale, Viktor — University of Southampton
Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs
5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision ...
LI, ANG — University College London
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.