Advanced Interference Suppression Techniques for Spread Spectrum Systems

Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...

Yunlong Cai — University of York


Nonlinear receivers for DS-CDMA

The growing demand for capacity in wireless communications is the driving force behind improving established networks and the deployment of a new worldwide mobile standard. Capacity calculations show that the direct sequence code division multiple access (DS-CDMA) technique has more capacity than the time division multiple access technique. Therefore, most 3rd generation mobile systems will incorporate some sort of DS-CDMA. In this thesis DS-CDMA receiver structures are investigated from the view point of pattern recognition which leads to new DS-CDMA receiver structures. It is known that the optimum DS-CDMA receiver has a nonlinear structure with prohibitive complexity for practical implementation. It is also known that the currently implemented receiver in 2nd generation DSCDMA mobile handsets has poor performance, because it suffers from multiuser interference. Consequently, this work focuses on sub-optimum nonlinear receivers for DS-CDMA in the downlink scenario. First, the ...

Tanner, Rudolf — University Of Edinburgh


Near Maximum Likelihood Multiuser Receivers for Direct Sequence Code Division Multiple Access

Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest ...

Sim, Hak Keong — University Of Edinburgh


On Adaptive MMSE Receiver Strategies for TD-CDMA

In this thesis a modified implementation of the adaptive minimum mean squared error (MMSE) receiver for a time division code division multiple access (TD-CDMA) system for third generation mobile communications is presented. This implementation can operate with spreading sequences which span over a few symbols and in environments where more than one spreading code is allocated to a single user. Two structures which combine the presented MMSE structure and the Rake receiver are also presented in an attempt to combine the advantages of both structures. After analysing the effect on a direct sequence spread spectrum system of multiple access interference and multipath fading induced inter-chip interference, the existing techniques for multiple access interference suppression capabilities are reviewed. Special attention is paid to the adaptive MMSE receiver, which takes into account the effect of multipath fading without requiring any additional channel ...

Garcia-Alis, Daniel — University of Strathclyde


Multiuser demodulation for DS-CDMA systems in fading channels

Multiuser demodulation algorithms for centralized receivers of asynchronous direct-sequence (DS) spread-spectrum code-division multiple-access (CDMA) systems in frequency-selective fading channels are studied. Both DS-CDMA systems with short (one symbol interval) and long (several symbol intervals) spreading sequences are considered. Linear multiuser receivers process ideally the complete received data block. The approximation of ideal infinite memory-length (IIR) linear multiuser detectors by finite memory-length (FIR) detectors is studied. It is shown that the FIR detectors can be made near-far resistant under a given ratio between maximum and minimum received power of users by selecting an appropriate memory-length. Numerical examples demonstrate the fact that moderate memory-lengths of the FIR detectors are sufficient to achieve the performance of the ideal IIR detectors even under severe near-far conditions. Multiuser demodulation in relatively fast fading channels is analyzed. The optimal maximum likelihood sequence detection receiver and suboptimal ...

Juntti, Markku — University of Oulou


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Adaptive Equalisation for Downlink UMTS Terrestrial Radio Access

The third generation mobile system Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA) has been mainly specified to provide various multimedia capabilities and good service quality. However, since UMTS is based on direct sequence CDMA (DS-CDMA) techniques the performance and the capacity of such systems is significantly limited by multiuser access interference (MAI) and inter-symbol interference (ISI). Therefore, robust and reliable detectors are required to mitigate these effects. Specifically, the multi-user detector exhibits a significant improvement in capacity and spectrum efficiency compared with the conventional matched filter receiver and single-user detector. Nevertheless, its complexity and prior knowledge requirement render it unsuitable for application in the downlink due to handset constraints. In this thesis, we propose a new robust and simple blind multiuser equaliser for downlink DS-CDMA systems, the so-called filtered-R multiple error CM algorithm (FIRMER-CMA) equaliser. The latter has ...

Hadef, Mahmoud — University of Southampton


Statistical Physics Approach to Design and Analysis of Multiuser Systems Under Channel Uncertainty

Code-division multiple-access (CDMA) systems with random spreading and channel uncertainty at the receiver are studied. Frequency selective single antenna, as well as, narrowband multiple antenna channels are considered. Rayleigh fading is assumed in all cases. General Bayesian approach is used to derive both iterative and non-iterative estimators whose performance is obtained in the large system limit via the replica method from statistical physics. The effect of spatial correlation on the performance of a multiple antenna CDMA system operating in a flat-fading channel is studied. Per-antenna spreading (PAS) with random signature sequences and spatial multiplexing is used at the transmitter. Non-iterative multiuser detectors (MUDs) using imperfect channel state information (CSI) are derived. Training symbol based channel estimators having mismatched a priori knowledge about the antenna correlation are considered. Both the channel estimator and the MUD are shown to admit a simple ...

Vehkapera, Mikko — Norwegian University of Science and Technology


Signal Processing Algorithms for CDMA-Based Wireless Communications

Wireless communication systems rely on a multiple-access technique, i.e., a mechanism to divide the common transmission medium among di erent users. Code-division multiple-access (CDMA) is a multiple-access technique that has received considerable attention in recent years. In a CDMA system, each user spreads his information-bearing signal into a wideband signal, using speci c code information. All users then transmit their wideband signal within the same frequency and time channel. This thesis deals with the development of receivers for various CDMA systems. Digital signal processing plays a central role in this development. In recent literature, so-called multi-user receivers have become very popular. These receivers take into account the full structure of the multi-user interfer- ence (MUI), i.e., the interference originating from the other users. However, they have a rather high computational complexity. In the rst part of this the- sis, we ...

Leus, Geert — Katholieke Universiteit Leuven


The Multivariable Decision Feedback Equalizer - Multiuser Detection and Interference Rejection

The multivariable decision feedback equalizer is investigated as a tool for multiuser detection and interference rejection. Three different DFE structures are introduced. The first DFE has a non-causal feedforward filter and a causal feedback filter. We show how its parameters can be tuned to give a minimum mean-square error. The second DFE is derived under the constraint of realizability. The explicit structure and design equations for an optimum realizable minimum mean-square error DFE are obtained. The zero-forcing criterion is also considered, and conditions for the existence of a zero-forcing solution are derived. We then consider a DFE where both feedforward and feedback filters are FIR filters of predetermined degrees. We discuss the tuning procedure for obtaining the parameters of a minimum mean-square error DFE and present the conditions for the existence of a zero-forcing solution. Two specific applications are considered ...

Tidestav, Claes — Uppsala University


Efficient Interference Suppression and Resource Allocation in MIMO and DS-CDMA Wireless Networks

Direct-sequence code-divisionmultiple-access (DS-CDMA) and multiple-input multiple-output (MIMO) wireless networks form the physical layer of the current generation of mobile networks and are anticipated to play a key role in the next generation of mobile networks. The improvements in capacity, data-rates and robustness that these networks provide come at the cost of increasingly complex interference suppression and resource allocation. Consequently, efficient approaches to these tasks are essential if the current rate of progression in mobile technology is to be sustained. In this thesis, linear minimum mean-square error (MMSE) techniques for interference suppression and resource allocation in DS-CDMA and cooperative MIMO networks are considered and a set of novel and efficient algorithms proposed. Firstly, set-membership (SM) reduced-rank techniques for interference suppression in DS-CDMA systems are investigated. The principals of SM filtering are applied to the adaptation of the projection matrix and reduced-rank ...

Patrick Clarke — University of York


Bearing Estimation Techniques for Improved Performance Spread Spectrum Receivers

The main topic of this thesis is the use of bearing estimation techniques combined with multiple antenna elements for spread spectrum receivers. The motivation behind this work is twofold: firstly, this type of receiver structure may offer the ability to locate the position of a mobile radio in an urban environment. Secondly, these algorithms permit the application of space division multiple access (SDMA) to cellular mobile radio, which can offer large system capacity increases. The structure of these receivers may naturally be divided into two parts: signal detection and spatial filtering blocks. The signal detection problem involves locating the bearings of the multipath components which arise from the transmission of the desired user’s signal. There are a number of approaches to this problem, but here the MUSIC algorithm will be adopted. This algorithm requires an initial estimate of the number ...

Thompson, John S. — University Of Edinburgh


Reduced-Complexity Code Synchronization in Multipath Channels for BOC Modulated CDMA Signals with Applications in Galileo and Modernized GPS Systems

Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...

Burian, Adina — Universitat Trier


OFDM Multi-User Communication Over Time-Variant Channels

Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...

Zemen, T. — Vienna University of Technology


Ultra Wideband Communications: from Analog to Digital

The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...

Song, Nuan — Ilmenau University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.