ACHIEVABLE RATES FOR GAUSSIAN CHANNELS WITH MULTIPLE RELAYS (2008)
Virtual-MIMO Systems with Compress-and-Forward Cooperation
Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected ...
Jiang, Jing — University of Edinburgh
On the Energy Efficiency of Cooperative Wireless Networks
The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...
Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid
Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems
Multiple-input multiple output (MIMO) systems deploy multiple antennas at either end of a communication link and can provide significant benefits compared to traditional single antenna systems, such as increased data rates through spatial multiplexing gain, and/or improved link reliability through diversity techniques. Recently, the natural extension of utilising multiple antennas in relay networks, known as MIMO relaying, has attracted significant research attention due to the fact that the benefits of MIMO can be coupled with extended network coverage through the use of relaying devices. This thesis concentrates on the design and analysis of different aspects of MIMO relay systems communicating over frequency selective channels with the use of orthogonal frequency division multiplexing (OFDM). The first focus of this thesis is on the development of training based channel estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of channel ...
Millar, Andrew Paul — University of Strathclyde
Cooperative Techniques for Interference Management in Wireless Networks
In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...
Lameiro, Christian — University of Cantabria
Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks
Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...
Peng, Tong — University of York
Randomized Space-Time Block Coding for the Multiple-Relay Channel
In the last decade, cooperation among multiple terminals has been seen as one of the more promising strategies to improve transmission speed in wireless communications networks. Basically, the idea is to mimic an antenna array and apply distributed versions of well-known space-diversity techniques. In this context, the simplest cooperative scheme is the relay channel: all the terminals (relays) that overhear a point-to-point communication between a source and a destination may decide to aid the source by forwarding (relaying) its message. In a mobile system, it is common to assume that the relays do not have any information about the channel between them and the destination. Under this hypothesis, the best solution to exploit the diversity offered by multiple transmitting antennas is to use space-time coding (STC). However, classical STC's are designed for systems with a fixed and usually low number ...
Gregoratti, David — Universitat Politecnica de Catalunya (UPC)
Feedback-Channel and Adaptive MIMO Coded-Modulations
When the transmitter of a communication system disposes of some Channel State Information (CSI), it is possible to design linear precoders that optimally allocate the power inducing high gains either in terms of capacity or in terms of reliable communications. In practical scenarios, this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch between the CSI at the transmitter and the real channel. In that context, this thesis deals with two different, but related, topics: the design of a feasible transmitter channel tracker for time varying channels, and the design of optimal linear precoders robust to imperfect channel estimates. The first part of the thesis proposes the design of a channel tracker that provides an accurate CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have been criticized because ...
Rey, Francesc — Universitat Politecnica de Catalunya
Cooperative and Cognitive Communication Techniques for Wireless Networks
During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...
Tsinos, Christos — University of Patras
Communication Rates for Fading Channels with Imperfect Channel-State Information
An important specificity of wireless communication channels are the rapid fluctuations of propagation coefficients. This effect is called fading and is caused by the motion of obstacles, scatterers and reflectors standing along the different paths of electromagnetic wave propagation between the transmitting and the receiving terminal. These changes in the geometry of the wireless channel prompt the attenuation coefficients and the relative phase shifts between the multiple propagation paths to vary. This suggests to model the channel coefficients (the transfer matrix) as random variables. The present thesis studies information rates for reliable transmission of information over fading channels under the realistic assumption that the receiver has only imperfect knowledge of the random fading state. While the over-idealized assumption of perfect channel-state information at the receiver (CSIR) gives rise to many simple expressions and is fairly well understood, the settings with ...
Pastore, Adriano — Universitat Politècnica de Catalunya
When data is transmitted over the wireless communication channel, the transmit signal experiences distortion depending on the channel¢s fading characteristics. On the one hand, this calls for efficient processing at the receiver to mitigate the detrimental effects of the channel and maximize data throughput. On the other hand, the diversity inherently present in these channels can be leveraged with appropriate transmit processing in order to increase the reliability of the transmission link. Recently, in [1] it was shown that the channel characteristics can be exploited to maximize the total data throughput in the interference channel where multiple user pairs rely on the same resource to communicate among themselves. In this PhD dissertation, we first propose novel equalizer designs for frequency selective channels. We then present new results on the diversity gain of equalizers in fading channels when appropriate precoding is ...
Shenoy, Shakti Prasad — EURECOM/Mobile Communications
Massive MIMO: Fundamentals and System Designs
The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...
Ngo, Quoc Hien — Linköping University
Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in order to increase the performance, spectral efficiency, and reliability. Theoretically, the channel capacity of those systems grows linearly with the number of transmit and receive antennas. An important performance metric beneath capacity is the normalised mean square error (MSE) under the assumption of optimal linear reception. Clearly, both performance measures depend on the properties of the MIMO channel as well as on the considered system approach, e.g. on the type of channel state information which is available at the transmitter. It has been shown that even partial CSI at the transmitter can increase the performance. In this thesis, we analyse the performance and design optimal transmit strategies of singleand multiuser MIMO systems with respect to the statistical properties of the fading channel and under different types of CSI at ...
Jorswieck, Eduard — TU Berlin / Mobile Communications
Digital design and experimental validation of high-performance real-time OFDM systems
The goal of this Ph.D. dissertation is to address a number of challenges encountered in the digital baseband design of modern and future wireless communication systems. The fast and continuous evolution of wireless communications has been driven by the ambitious goal of providing ubiquitous services that could guarantee high throughput, reliability of the communication link and satisfy the increasing demand for efficient re-utilization of the heavily populated wireless spectrum. To cope with these ever-growing performance requirements, researchers around the world have introduced sophisticated broadband physical (PHY)-layer communication schemes able to accommodate higher bandwidth, which indicatively include multiple antennas at the transmitter and receiver and are capable of delivering improved spectral efficiency by applying interference management policies. The merging of Multiple Input Multiple Output (MIMO) schemes with the Orthogonal Frequency Division Multiplexing (OFDM) offers a flexible signal processing substrate to implement ...
Font-Bach, Oriol — Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Study and optimization of multi-antenna systems associated with multicarrier modulations
Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...
LE NIR, Vincent — INSA de Rennes
Impact of channel state information on the analysis and design of multiantenna communication systems
During the last decade, there has been a steady increase in the demand of high data rates that are to be supported by wireless communication applications. Among the different solutions that have been proposed by the research community to cope with this new demand, the utilization of multiple antennas arises as one of the best candidates due to the fact that it provides both an increase in reliability and also in information transmission rate. Although the use of multiple antennas at the receiver side dates back from the sixties, the full potential of multiple antennas at both communication ends has been both theoretically and practically recognized in the last few years. The design of proper multi-antenna communication systems to satisfy the high data rates demand depends not only on the chosen figure of merit or performance metric, but also on ...
Payaró Llisterri, Miquel — Centre Technologic de Telecomunicacions de Catalunya
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.