Decompositions Parcimonieuses Structurees: Application a la presentation objet de la musique (2007)
Interactive Real-time Musical Systems
This thesis focuses on the development of automatic accompaniment sys- tems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a ‘black box’ approach is tested on a wide variety of music genres. We highlight some of the difficulties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and ...
Robertson, Andrew — Queen Mary, University of London
Automatic Transcription of Polyphonic Music Exploiting Temporal Evolution
Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving ...
Benetos, Emmanouil — Centre for Digital Music, Queen Mary University of London
Melody Extraction from Polyphonic Music Signals
Music was the first mass-market industry to be completely restructured by digital technology, and today we can have access to thousands of tracks stored locally on our smartphone and millions of tracks through cloud-based music services. Given the vast quantity of music at our fingertips, we now require novel ways of describing, indexing, searching and interacting with musical content. In this thesis we focus on a technology that opens the door to a wide range of such applications: automatically estimating the pitch sequence of the melody directly from the audio signal of a polyphonic music recording, also referred to as melody extraction. Whilst identifying the pitch of the melody is something human listeners can do quite well, doing this automatically is highly challenging. We present a novel method for melody extraction based on the tracking and characterisation of the pitch ...
Salamon, Justin — Universitat Pompeu Fabra
Acoustic Event Detection: Feature, Evaluation and Dataset Design
It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...
Mina Mounir — KU Leuven, ESAT STADIUS
Towards Automatic Extraction of Harmony Information from Music Signals
In this thesis we address the subject of automatic extraction of harmony information from audio recordings. We focus on chord symbol recognition and methods for evaluating algorithms designed to perform that task. We present a novel six-dimensional model for equal tempered pitch space based on concepts from neo-Riemannian music theory. This model is employed as the basis of a harmonic change detection function which we use to improve the performance of a chord recognition algorithm. We develop a machine readable text syntax for chord symbols and present a hand labelled chord transcription collection of 180 Beatles songs annotated using this syntax. This collection has been made publicly available and is already widely used for evaluation purposes in the research community. We also introduce methods for comparing chord symbols which we subsequently use for analysing the statistics of the transcription collection. ...
Harte, Christopher — Queen Mary, University of London
Music Language Models for Automatic Music Transcription
Much like natural language, music is highly structured, with strong priors on the likelihood of note sequences. In automatic speech recognition (ASR), these priors are called language models, which are used in addition to acoustic models and participate greatly to the success of today's systems. However, in Automatic Music Transcription (AMT), ASR's musical equivalent, Music Language Models (MLMs) are rarely used. AMT can be defined as the process of extracting a symbolic representation from an audio signal, describing which notes were played at what time. In this thesis, we investigate the design of MLMs using recurrent neural networks (RNNs) and their use for AMT. We first look into MLM performance on a polyphonic prediction task. We observe that using musically-relevant timesteps results in desirable MLM behaviour, which is not reflected in usual evaluation metrics. We compare our model against benchmark ...
Ycart, Adrien — Queen Mary University of London
Some Contributions to Music Signal Processing and to Mono-Microphone Blind Audio Source Separation
For humans, the sound is valuable mostly for its meaning. The voice is spoken language, music, artistic intent. Its physiological functioning is highly developed, as well as our understanding of the underlying process. It is a challenge to replicate this analysis using a computer: in many aspects, its capabilities do not match those of human beings when it comes to speech or instruments music recognition from the sound, to name a few. In this thesis, two problems are investigated: the source separation and the musical processing. The first part investigates the source separation using only one Microphone. The problem of sources separation arises when several audio sources are present at the same moment, mixed together and acquired by some sensors (one in our case). In this kind of situation it is natural for a human to separate and to recognize ...
Schutz, Antony — Eurecome/Mobile
Music Pre-Processing for Cochlear Implants
A Cochlear Implant (CI) is a medical device that enables profoundly hearing impaired people to perceive sounds by electrically stimulating the auditory nerve using an electrode array implanted in the cochlea. The focus of most research on signal processing for CIs has been on strategies to improve speech understanding in quiet and in background noise, since the main aim for implanting a CI was (and still is) to restore the ability to communicate. Most CI users perform quite well in terms of speech understanding. On the other hand, music perception and appreciation are generally very poor. The main goal of this PhD project was to investigate and to improve the poor music enjoyment in CI users. An initial experiment with multi-track recordings was carried out to examine the music mixing preferences for different instruments in polyphonic or complex music. In ...
Buyefns, Wim — KU Leuven
Software-Based Extraction of Objective Parameters from Music Performances
Different music performances of the same score may significantly differ from each other. It is obvious that not only the composer¢s work, the score, defines the listener¢s music experience, but that the music performance itself is an integral part of this experience. Music performers use the information contained in the score, but interpret, transform or add to this information. Four parameter classes can be used to describe a performance objectively: tempo and timing, loudness, timbre and pitch. Each class contains a multitude of individual parameters that are at the performers¢ disposal to generate a unique physical rendition of musical ideas. The extraction of such objective parameters is one of the difficulties in music performance research. This work presents an approach to the software-based extraction of tempo and timing, loudness and timbre parameters from audio files to provide a tool for ...
Lerch, Alexander — Technical University of Berlin
A Computational Framework for Sound Segregation in Music Signals
Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...
Martins, Luis Gustavo — Universidade do Porto
Guitar Tablature Generation with Deep Learning
The burgeoning of deep learning-based music generation has overlooked the potential of symbolic representations tailored for fretted instruments. Guitar tablatures offer an advantageous approach to represent prescriptive information about music performance, often missing from standard MIDI representations. This dissertation tackles a gap in symbolic music generation by developing models that predict both musical structures and expressive guitar performance techniques. We first present DadaGP, a dataset comprising over 25k songs converted from the Guitar Pro tablature format to a dedicated token format suiting sequence models such as the Transformer. To establish a benchmark, we first introduce a baseline unconditional model for guitar tablature generation, by training a Transformer-XL architecture on the DadaGP dataset. We explored various architecture configurations and experimented with two different tokenisation approaches. Delving into controllability of the generative process, we introduce methods for manipulating the output's instrumentation (inst-CTRL) ...
Sarmento, Pedro — Queen Mary University of London
Time-domain music source separation for choirs and ensembles
Music source separation is the task of separating musical sources from an audio mixture. It has various direct applications including automatic karaoke generation, enhancing musical recordings, and 3D-audio upmixing; but also has implications for other downstream music information retrieval tasks such as multi-instrument transcription. However, the majority of research has focused on fixed stem separation of vocals, drums, and bass stems. While such models have highlighted capabilities of source separation using deep learning, their implications are limited to very few use cases. Such models are unable to separate most other instruments due to insufficient training data. Moreover, class-based separation inherently limits the applicability of such models to be unable to separate monotimbral mixtures. This thesis focuses on separating musical sources without requiring timbral distinction among the sources. Preliminary attempts focus on the separation of vocal harmonies from choral ensembles using ...
Sarkar, Saurjya — Queen Mary University of London
Pitch-informed solo and accompaniment separation
This thesis addresses the development of a system for pitch-informed solo and accompaniment separation capable of separating main instruments from music accompaniment regardless of the musical genre of the track, or type of music accompaniment. For the solo instrument, only pitched monophonic instruments were considered in a single-channel scenario where no panning or spatial location information is available. In the proposed method, pitch information is used as an initial stage of a sinusoidal modeling approach that attempts to estimate the spectral information of the solo instrument from a given audio mixture. Instead of estimating the solo instrument on a frame by frame basis, the proposed method gathers information of tone objects to perform separation. Tone-based processing allowed the inclusion of novel processing stages for attack re nement, transient interference reduction, common amplitude modulation (CAM) of tone objects, and for better ...
Cano Cerón, Estefanía — Ilmenau University of Technology
Parallel Dictionary Learning Algorithms for Sparse Representations
Sparse representations are intensively used in signal processing applications, like image coding, denoising, echo channels modeling, compression, classification and many others. Recent research has shown encouraging results when the sparse signals are created through the use of a learned dictionary. The current study focuses on finding new methods and algorithms, that have a parallel form where possible, for obtaining sparse representations of signals with improved dictionaries that lead to better performance in both representation error and execution time. We attack the general dictionary learning problem by first investigating and proposing new solutions for sparse representation stage and then moving on to the dictionary update stage where we propose a new parallel update strategy. Lastly, we study the effect of the representation algorithms on the dictionary update method. We also researched dictionary learning solutions where the dictionary has a specific form. ...
Irofti, Paul — Politehnica University of Bucharest
Highly Efficient Low-Level Feature Extraction For Video Representation And Retrieval
Witnessing the omnipresence of ever complex yet so intuitive digital video media, research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Therefore, the third generation of Content Based Video Indexing and Retrieval systems faces the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed-domain features and the robust scalable analysis in the ...
Calic, Janko — Queen Mary University of London
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.