Abstract / truncated to 115 words (read the full abstract)

Today, adaptive algorithms represent one of the most frequently used computational tools for the processing of digital speech signals. This work investigates and analyzes the properties of adaptive algorithms in speech communication applications where rigorous conditions apply, such as noise and echo cancelation. Like other theses in this field do, it tries to tackle the ever-lasting problem of computational complexity vs. rate of convergence. It introduces some new adaptive methods that stem from the existing algorithms as well as a novel concept which has been entitled Optimal Step-Size (OSS). In the first part of the thesis we investigate some well-known, widely used adaptive techniques such as the Normalized Least Mean Squares (NLMS) and the Recursive ... toggle 7 keywords

adaptive algorithm least mean square nosie cancellation signal processing speech processing variable step-size echo cancellation

Information

Author
Malenovsky, Vladimir
Institution
Department of Telecommunications, Brno University of Technology, Czech Republic
Supervisors
Publication Year
2006
Upload Date
Dec. 12, 2008

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.