Signal processing and classification for magnetic resonance spectroscopic data with clinical applications

Over the last decades, Magnetic Resonance Imaging (MRI) has taken a leading role in the study of human body and it is widely used in clinical diagnosis. In vivo and ex vivo Magnetic Resonance Spectroscopic (MRS) techniques can additionally provide valuable metabolic information as compared to MRI and are gaining more clinical interest. The analysis of MRS data is a complex procedure and requires several preprocessing steps aiming to improve the quality of the data and to extract the most relevant features before any classification algorithm can be successfully applied. In this thesis a new approach to quantify magnetic resonance spectroscopic imaging (MRSI) data and therefore to obtain improved metabolite estimates is proposed. Then an important part is focusing on improving the diagnosis of glial brain tumors which are characterized by an extensive heterogeneity since various intramural histopathological properties such ...

Croitor Sava, Anca Ramona — KU Leuven


Classification of brain tumors based on magnetic resonance spectroscopy

Nowadays, diagnosis and treatment of brain tumors is based on clinical symptoms, radiological appearance, and often histopathology. Magnetic resonance imaging (MRI) is a major noninvasive tool for the anatomical assessment of tumors in the brain. However, several diagnostic questions, such as the type and grade of the tumor, are difficult to address using MRI. The histopathology of a tissue specimen remains the gold standard, despite the associated risks of surgery to obtain a biopsy. In recent years, the use of magnetic resonance spectroscopy (MRS), which provides a metabolic profile, has gained a lot of interest for a more detailed and specific noninvasive evaluation of brain tumors. In particular, magnetic resonance spectroscopic imaging (MRSI) is attractive as this may also enable to visualize the heterogeneous spatial extent of tumors, both inside and outside the MRI detectable lesion. As manual, individual, viewing ...

Luts, Jan — Katholieke Universiteit Leuven


Quantification and classification of Magnetic Resonance Spectroscopy data and applications to brain tumour recognition

The medical diagnosis of brain tumours is one of the main applications of Magnetic Resonance. Magnetic Resonance consists of two main branches: Imaging and Spectroscopy. Magnetic Resonance Imaging is very well-known as the radiologic technique applied to produce high-quality images of tissues, such as the brain tissue, for diagnostic purposes. Magnetic Resonance Spectroscopy provides chemical information about all the molecules present in the brain, such as their concentrations. Both Imaging and Spectroscopy can be exploited for the grading and typing of brain tumours, also called the classification of brain tumours. As first topic, this thesis mainly studied the contribution of Spectroscopy for automated classification and the influence of several factors on the classification performance. It was found that a few preprocessing steps did not have a large impact on the classification results. This implies that several preprocessing steps can be ...

Devos, Andy — Katholieke Universiteit Leuven


Subspace-based quantification of magnetic resonance spectroscopy data using biochemical prior knowledge

Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...

Laudadio, Teresa — Katholieke Universiteit Leuven


Least squares support vector machines classification applied to brain tumour recognition using magnetic resonance spectroscopy

Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...

Lukas, Lukas — Katholieke Universiteit Leuven


Analysis and improvement of quantification algorithms for magnetic resonance spectroscopy

Magnetic Resonance Spectroscopy (MRS) is a technique used in fundamental research and in clinical environments. During recent years, clinical application of MRS gained importance, especially as a non-invasive tool for diagnosis and therapy monitoring of brain and prostate tumours. The most important asset of MRS is its ability to determine the concentration of chemical substances non-invasively. To extract relevant signal parameters, MRS data have to be quantified. This usually doesn¢t prove to be straightforward since in vivo MRS signals are characterized by poor signal-to-noise ratios, overlapping peaks, acquisition related artefacts and the presence of disturbing components (e.g. residual water in proton spectra). The work presented in this thesis aims to improve the quantification in different applications of MRS in vivo. To obtain the signal parameters related to MRS data, different approaches were suggested in the past. Black-box methods, don¢t require ...

Pels, Pieter — Katholieke Universiteit Leuven


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Advanced signal processing for magnetic resonance spectroscopy

Assertive diagnosis of cancer, Alzheimer’s disease, epilepsy and other metabolic diseases is essential to provide patients with the adequate treatment. Recently, different invasive and non-invasive techniques have been developed for this purpose, nevertheless, due to their harmless properties the non-invasive techniques have gained more value. Magnetic Resonance is a well-known non-invasive technique that provides spectra (metabolite peaks) and images (anatomical structures) of the examined tissue. In Magnetic Resonance Spectroscopy (MRS), molecules containing certain excitable nuclei, such as 1H, provide the metabolite information. As a consequence, the peaks in the MR spectra correspond to observable metabolites which are the biomarkers of diseases. Finally, metabolite concentrations are computed and compared against normal values in order to establish the diagnosis. The method to obtain such amplitudes is also called quantification and its accuracy is essential for diagnosis assessment. Quantification of MRS signals is ...

Osorio Garcia, Maria Isabel — KU Leuven


Machine learning methods for multiple sclerosis classification and prediction using MRI brain connectivity

In this thesis, the power of Machine Learning (ML) algorithms is combined with brain connectivity patterns, using Magnetic Resonance Imaging (MRI), for classification and prediction of Multiple Sclerosis (MS). White Matter (WM) as well as Grey Matter (GM) graphs are studied as connectome data types. The thesis addresses three main research objectives. The first objective aims to generate realistic brain connectomes data for improving the classification of MS clinical profiles in cases of data scarcity and class imbalance. To solve the problem of limited and imbalanced data, a Generative Adversarial Network (GAN) was developed for the generation of realistic and biologically meaningful connec- tomes. This network achieved a 10% better MS classification performance compared to classical approaches. As second research objective, we aim to improve classification of MS clinical profiles us- ing morphological features only extracted from GM brain tissue. ...

Barile, Berardino — KU Leuven


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Advanced time-domain methods for nuclear magnetic resonance spectroscopy data analysis

Over the past years magnetic resonance spectroscopy (MRS) has been of significant importance both as a fundamental research technique in different fields, as well as a diagnostic tool in medical environments. With MRS, for example, spectroscopic information, such as the concentrations of chemical substances, can be determined non-invasively. To that end, the signals are first modeled by an appropriate model function and mathematical techniques are subsequently applied to determine the model parameters. In this thesis, signal processing algorithms are developed to quantify in-vivo and ex-vivo MRS signals. These are usually characterized by a poor signal-to-noise ratio, overlapping peaks, deviations from the model function and in some cases the presence of disturbing components (e.g. the residual water in proton spectra). The work presented in this thesis addresses a part of the total effort to provide accurate, efficient and automatic data analysis ...

Vanhamme, Leentje — Katholieke Universiteit Leuven


Towards an Automated Portable Electroencephalography-based System for Alzheimer’s Disease Diagnosis

Alzheimer’s disease (AD) is a neurodegenerative terminal disorder that accounts for nearly 70% of dementia cases worldwide. Global dementia incidence is projected to 75 million cases by 2030, with the majority of the affected individuals coming from low- and medium- income countries. Although there is no cure for AD, early diagnosis can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using mental status examinations, expensive neuroimaging scans, and invasive laboratory tests, all of which render the diagnosis time-consuming and costly. Notwithstanding, over the last decade electroencephalography (EEG), specifically resting-state EEG (rsEEG), has emerged as an alternative technique for AD diagnosis with accuracies inline with those obtained with more expensive neuroimaging tools, such as magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET). However the use of rsEEG for ...

Cassani, Raymundo — Université du Québec, Institut national de la recherche scientifique


Advanced solutions for neonatal analysis and the effects of maturation

Worldwide approximately 11% of the babies are born before 37 weeks of gestation. The survival rates of these prematurely born infants have steadily increased during the last decades as a result of the technical and medical progress in the neonatal intensive care units (NICUs). The focus of the NICUs has therefore gradually evolved from increasing life chances to improving quality of life. In this respect, promoting and supporting optimal brain development is crucial. Because these neonates are born during a period of rapid growth and development of the brain, they are susceptible to brain damage and therefore vulnerable to adverse neurodevelopmental outcome. In order to identify patients at risk of long-term disabilities, close monitoring of the neurological function during the first critical weeks is a primary concern in the current NICUs. Electroencephalography (EEG) is a valuable tool for continuous noninvasive ...

De Wel, Ofelie — KU Leuven


Meningioma (Brain Tumor) Classification using an Adaptive Discriminant Wavelet Packet Transform

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for ...

Qureshi, Hammad — University of Warwick


Combining anatomical and spectral information to enhance MRSI resolution and quantification: Application to Multiple Sclerosis

Multiple sclerosis is a progressive autoimmune disease that a˙ects young adults. Magnetic resonance (MR) imaging has become an integral part in monitoring multiple sclerosis disease. Conventional MR imaging sequences such as fluid attenuated inversion recovery imaging have high spatial resolution, and can visualise the presence of focal white matter brain lesions in multiple sclerosis disease. Manual delineation of these lesions on conventional MR images is time consuming and su˙ers from intra and inter-rater variability. Among the advanced MR imaging techniques, MR spectroscopic imaging can o˙er complementary information on lesion characterisation compared to conventional MR images. However, MR spectroscopic images have low spatial resolution. Therefore, the aim of this thesis is to automatically segment multiple sclerosis lesions on conventional MR images and use the information from high-resolution conventional MR images to enhance the resolution of MR spectroscopic images. Automatic single time ...

Jain, Saurabh — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.