Design and evaluation of noise reduction techniques for binaural hearing aids

One of the main complaints of hearing aid users is their degraded speech understanding in noisy environments. Modern hearing aids therefore include noise reduction techniques. These techniques are typically designed for a monaural application, i.e. in a single device. However, the majority of hearing aid users currently have hearing aids at both ears in a so-called bilateral fitting, as it is widely accepted that this leads to a better speech understanding and user satisfaction. Unfortunately, the independent signal processing (in particular the noise reduction) in a bilateral fitting can destroy the so-called binaural cues, namely the interaural time and level differences (ITDs and ILDs) which are used to localize sound sources in the horizontal plane. A recent technological advance are so-called binaural hearing aids, where a wireless link allows for the exchange of data (or even microphone signals) between the ...

Cornelis, Bram — KU Leuven


Development and evaluation of psychoacoustically motivated binaural noise reduction and cue preservation techniques

Due to their decreased ability to understand speech hearing impaired may have difficulties to interact in social groups, especially when several people are talking simultaneously. Fortunately, in the last decades hearing aids have evolved from simple sound amplifiers to modern digital devices with complex functionalities including noise reduction algorithms, which are crucial to improve speech understanding in background noise for hearing-impaired persons. Since many hearing aid users are fitted with two hearing aids, so-called binaural hearing aids have been developed, which exchange data and signals through a wireless link such that the processing in both hearing aids can be synchronized. In addition to reducing noise and limiting speech distortion, another important objective of noise reduction algorithms in binaural hearing aids is the preservation of the listener’s impression of the acoustical scene, in order to exploit the binaural hearing advantage and ...

Marquardt, Daniel — University of Oldenburg, Germany


Binaural Beamforming Algorithms and Parameter Estimation Methods Exploiting External Microphones

In everyday speech communication situations undesired acoustic sources, such as competing speakers and background noise, frequently lead to a decreased speech intelligibility. Over the last decades, hearing devices have evolved from simple sound amplification devices to more sophisticated devices with complex functionalities such as multi-microphone speech enhancement. Binaural beamforming algorithms are spatial filters that exploit the information captured by multiple microphones on both sides of the head of the listener. Besides reducing the undesired sources, another important objective of a binaural beamforming algorithm is the preservation of the binaural cues of all sound sources to preserve the listener's spatial impression of the acoustic scene. The aim of this thesis is to develop and evaluate advanced binaural beamforming algorithms and to incorporate one or more external microphones in a binaural hearing device configuration. The first focus is to improve state-of-the-art binaural ...

Gößling, Nico — University of Oldenburg


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University


Speech Enhancement Algorithms for Audiological Applications

The improvement of speech intelligibility is a traditional problem which still remains open and unsolved. The recent boom of applications such as hands-free communi- cations or automatic speech recognition systems and the ever-increasing demands of the hearing-impaired community have given a definitive impulse to the research in this area. This PhD thesis is focused on speech enhancement for audiological applications. Most of the research conducted in this thesis has been focused on the improvement of speech intelligibility in hearing aids, considering the variety of restrictions and limitations imposed by this type of devices. The combination of source separation techniques and spatial filtering with machine learning and evolutionary computation has originated novel and interesting algorithms which are included in this thesis. The thesis is divided in two main parts. The first one contains a preliminary study of the problem and a ...

Ayllón, David — Universidad de Alcalá


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Integrated active noise control and noise reduction in hearing aids

In every day life conversations and listening scenarios the desired speech signal is rarely delivered alone. The listener most commonly faces a scenario where he has to understand speech in a noisy environment. Hearing impairments, and more particularly sensorineural losses, can cause a reduction of speech understanding in noise. Therefore, in a hearing aid compensating for such kind of losses it is not sufficient to just amplify the incoming sound. Hearing aids also need to integrate algorithms that allow to discriminate between speech and noise in order to extract a desired speech from a noisy environment. A standard noise reduction scheme in general aims at maximising the signal-to-noise ratio of the signal to be fed in the hearing aid loudspeaker. This signal, however, does not reach the eardrum directly. It first has to propagate through an acoustic path and encounter ...

Serizel, Romain — KU Leuven


Adaptive filtering techniques for noise reduction and acoustic feedback cancellation in hearing aids

Understanding speech in noise and the occurrence of acoustic feedback belong to the major problems of current hearing aid users. Hence, an urgent demand exists for efficient and well-working digital signal processing algorithms that offer a solution to these issues. In this thesis we develop adaptive filtering techniques for noise reduction and acoustic feedback cancellation. Thanks to the availability of low power digital signal processors, these algorithms can be integrated in a hearing aid. Because of the ongoing miniaturization in the hearing aid industry and the growing tendency towards multi-microphone hearing aids, robustness against imperfections such as microphone mismatch, has become a major issue in the design of a noise reduction algorithm. In this thesis we propose multimicrophone noise reduction techniques that are based on multi-channel Wiener filtering (MWF). Theoretical and experimental analysis demonstrate that these MWF-based techniques are less ...

Spriet, Ann — Katholieke Universiteit Leuven


Digital signal processing algorithms for noise reduction, dynamic range compression, and feedback cancellation in hearing aids

Hearing loss can be caused by many factors, e.g., daily exposure to excessive noise in the work environment and listening to loud music. Another important reason can be age-related, i.e., the slow loss of hearing that occurs as people get older. In general hearing impaired people suffer from a frequency-dependent hearing loss and from a reduced dynamic range between the hearing threshold and the uncomfortable level. This means that the uncomfortable level for normal hearing and hearing impaired people suffering from so called sensorineural hearing loss remains the same but the hearing threshold and the sensitivity to soft sounds are shifted as a result of the hearing loss. To compensate for this kind of hearing loss the hearing aid should include a frequency-dependent and a level-dependent gain. The corresponding digital signal processing (DSP) algorithm is referred to as dynamic range ...

Ngo, Kim — KU Leuven


Synthetic reproduction of head-related transfer functions by using microphone arrays

Spatial hearing for human listeners is based on the interaural as well as on the monaural analysis of the signals arriving at both ears, enabling the listeners to assign certain spatial components to these signals. This spatial aspect gets lost when the signals are reproduced via headphones without considering the acoustical influence of the head and torso, i.e. head-related transfer function (HRTFs). A common procedure to take into account spatial aspects in a binaural reproduction is to use so-called artificial heads. Artificial heads are replicas of a human head and torso with average anthropometric geometries and built-in microphones in the ears. Although, the signals recorded with artificial heads contain relevant spatial aspects, binaural recordings using artificial heads often suffer from front-back confusions and the perception of the sound source being inside the head (internalization). These shortcomings can be attributed to ...

Rasumow, Eugen — University of Oldenburg


Cognitive-driven speech enhancement using EEG-based auditory attention decoding for hearing aid applications

Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Although several speech enhancement algorithms are available to reduce background noise or to perform source separation in multi-speaker scenarios, their performance depends on correctly identifying the target speaker to be enhanced. Recent advances in electroencephalography (EEG) have shown that it is possible to identify the target speaker which the listener is attending to using single-trial EEG-based auditory attention decoding (AAD) methods. However, in realistic acoustic environments the AAD performance is influenced by undesired disturbances such as interfering speakers, noise and reverberation. In addition, it is important for real-world hearing aid applications to close the AAD loop by presenting on-line auditory feedback. This thesis deals with the problem of identifying and enhancing the target speaker in realistic acoustic environments based on decoding the auditory attention ...

Aroudi, Ali — University of Oldenburg, Germany


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Audio Signal Processing for Binaural Reproduction with Improved Spatial Perception

Binaural technology aims to reproduce three-dimensional auditory scenes with a high level of realism by providing the auditory display with spatial hearing information. This technology has various applications in virtual acoustics, architectural acoustics, telecommunication and auditory science. One key element in binaural technology is the actual binaural signals, produced by filtering a sound-field with free-field head related transfer functions (HRTFs). With the increased popularity of spherical microphone arrays for sound-field recording, methods have been developed for rendering binaural signals from these recordings. The use of spherical arrays naturally leads to processing methods that are formulated in the spherical harmonics (SH) domain. For accurate SH representation, high-order functions, of both the sound-field and the HRTF, are required. However, a limited number of microphones, on one hand, and challenges in acquiring high resolution individual HRTFs, on the other hand, impose limitations on ...

Ben-Hur, Zamir — Ben-Gurion University of the Negev


Distributed Signal Processing for Binaural Hearing Aids

Over the last centuries, hearing aids have evolved from crude and bulky horn-shaped instruments to lightweight and almost invisible digital signal processing devices. While most of the research has focused on the design of monaural apparatus, the use of a wireless link has been recently advocated to enable data transfer between hearing aids such as to obtain a binaural system. The availability of a wireless link offers brand new perspectives but also poses great technical challenges. It requires the design of novel signal processing schemes that address the restricted communication bitrates, processing delays and power consumption limitations imposed by wireless hearing aids. The goal of this dissertation is to address these issues at both a theoretical and a practical level. We start by taking a distributed source coding view on the problem of binaural noise reduction. The proposed analysis allows ...

Roy, Olivier — EPFL


Design and Evaluation of Feedback Control Algorithms for Implantable Hearing Devices

Using a hearing device is one of the most successful approaches to partially restore the degraded functionality of an impaired auditory system. However, due to the complex structure of the human auditory system, hearing impairment can manifest itself in different ways and, therefore, its compensation can be achieved through different classes of hearing devices. Although the majority of hearing devices consists of conventional hearing aids (HAs), several other classes of hearing devices have been developed. For instance, bone-conduction devices (BCDs) and cochlear implants (CIs) have successfully been used for more than thirty years. More recently, other classes of implantable devices have been developed such as middle ear implants (MEIs), implantable BCDs, and direct acoustic cochlear implants (DACIs). Most of these different classes of hearing devices rely on a sound processor running different algorithms able to compensate for the hearing impairment. ...

Bernardi, Giuliano — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.