Equalization and echo cancellation in DMT-based systems (2004)
Equalization and echo cancellation for DMT-based DSL modems
Broadband communications over the local telephone loop has become feasible nowadays by means of Digital Subscriber Line (DSL) technologies. Asymmetric DSL and one proposal for Very high bit rate DSL adopt Discrete Multitone (DMT) as modulation scheme. In this thesis we develop new equalization and echo cancellation structures for DMT-based receivers. Our main motivation is the application to DMT-based DSL-modems. In literature, a DMT-based receiver containing a multitap time domain equalizer (TEQ) and a 1-taps frequency domain equalizer per tone, has been presented. The TEQ is usually initialized by means of the so-called channel shortening algorithm. This does however not correspond to bit rate optimization, which is a major disadvantage. In part I, we aim at improving upon the channel shortening algorithm. In a first attempt, we maintain the receiver structure and only change the TEQ-initialization algorithm. In a second ...
Van Acker, Katleen — Katholieke Universiteit Leuven
Advanced equalization techniques for DMT-based systems
Digital subscriber line (DSL) technology is one of the fastest growing broadband internet access media. Whereas asymmetric DSL (ADSL) already offers data rates of a few megabits per second, next-generation ADSL2+ and VDSL promise even higher bit rates to support so-called triple play (high-quality video, voice and high-speed data). The use of a large bandwidth over the phone line (up to 12 MHz for VDSL) induces impairments, such as severe channel distortion, echo, narrow-band radiofrequency interference (RFI) and crosstalk from other DSL systems. DSL communication makes use of so-called discrete multitone (DMT) modulation, supplemented with advanced digital signal processing algorithms, to tackle these impairments and serve a maximum number of customers. In this thesis, we focus on channel equalization and RFI mitigation algorithms that outperform existing algorithms in terms of bit rate. DMT equalization is typically done by means of ...
Vanbleu, Koen — Katholieke Universiteit Leuven
Resource Allocation in Modulation and Equalization Procedures in DSL Modems
Digital subscriber line (DSL) technology is a very popular broadband access technology. It uses the existing telephone infrastructure to provide broadband access. In order to cope with the increased bandwidth demand to support broadband services, such as, Video on Demand (VoD), real time multimedia streaming, it is important to further improve the DSL. The main performance degradation of the DSL system is caused by channel impairments, such as, crosstalk and inter-symbol interference (ISI). Furthermore, the discrete Fourier transform (DFT) based discrete multitone (DMT) system has very poor spectral properties, which prohibit the use of tones at the band edges in order to meet the power spectral density (PSD) constraints of the system, thus reducing the achievable bit rate. In order to mitigate the channel impairments as well as to combat the poor spectral properties of the DFT based DMT, sophisticated ...
Kumar Pandey, Prabin — KU Leuven
Equalization, windowing and zero restoration for OFDM and single-carrier block transmission
Fourier transform (DFT). In the case of MCM, the transmitted data is encoded into blocks in the frequency domain, by using an inverse DFT (IDFT) at the transmitter. The receiver then consists of a DFT, followed by a one-tap complex equalizer for each tone. In SC-FDE the information is encoded into blocks in the time domain. At the receiver, the DFT and one-tap equalizer are followed by an extra IDFT. To avoid the loss of orthogonality between the tones, a guard interval (GI) is inserted between each two blocks. If the channel order doesn’t exceed the GI length, zero-forcing equalization is possible. For longer channels, a Per-Tone equalizer (PTEQ) can be used, which minimizes the mean square error of the received symbols. In practice, the individual bands are orthogonal but overlap, due to the slow roll-off of the DFT’s side ...
Cuypers, Gert — KU Leuven
Transmission over Time- and Frequency-Selective Mobile Wireless Channels
The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...
Barhumi, Imad — Katholieke Universiteit Leuven
Time Domain Channel Shortening for Multicarrier Systems
Multi-Carrier (MC) modulation has various advantages that make it useful for a wide variety of digital communication systems. Actually, it has been chosen as the physical layer standard for a diversity of basic systems such as digital transmission over telephone lines, applications in broadcasting and in wireless networks. The most important advantage of the MC system is its robustness against interferences. In fact, the cyclic prefix (CP) insertion through MC symbols provides higher immunity against delay spread and interferences. Therefore, as long as channel dispersion is not longer than the CP, system performance does not degrade and the need of time-domain equalization is not usually immediate. However, highly time dispersive channel leads to a significant reduction of the transmission data rate since the received signal is corrupted by both inter-carrier and inter symbol interferences. To avoid such a performance degradation, ...
Ben Salem, Emna — Sup'Com/University of Carthage, Tunisia
Signal and Spectrum Coordination for Next Generation DSL Networks
The ability to easily exchange and access data has transformed the way we work, study, inform and entertain ourselves. In particular, the Internet has had an effect on people’s lives in the past two decades that is profound. Profound as this effect may be, people seem not to grow tired of it. On the contrary: as of today, the Internet revolution is far from over. The thirst for bigger amounts of data at higher speeds and biquitous connectivity seem not to abate. This thirst for more, faster and better quality data is both a huge challenge and a huge opportunity for the broadband access industry. The opportunity lies on the fact that, as of the end of 2012, there were 600 million subscribers to broadband services around the world. Plus, even though the market is already enormous, it still has ...
Moraes, Rodrigo B. — KU Leuven
Near-end crosstalk cancellation in xDSL systems
In xDSL technology, high-speed data are transferred between the central office and the customers, or between two or more central offices using unshielded telephone lines. A major impairment that hinders the increase in data-rate through the twisted-pair line is near-end crosstalk (NEXT) between the adjacent twisted pairs. DSL systems with overlapping transmit and receive spectra are susceptible to NEXT which significantly increases the interference noise in the received signal and also reduces the reliability and availability of the system. One way to cancel the NEXT in the received signal is to deploy adaptive filters. However, if adaptive filters are deployed to cancel every possible NEXT signal from the other twisted pairs, the computational complexity increases in proportion to N^2 where N is the number of twisted pairs in the bundle and, therefore, it becomes prohibitive even for small values of ...
Nongpiur, Rajeev — University of Victoria, Canada
Multi-user Signal and Spectra Co-Ordination for digital subscriber lines
The appetite amongst consumers for ever higher data-rates seems insatiable. This booming market presents a huge opportunity for telephone and cable operators. It also presents a challenge: the delivery of broadband services to millions of customers across sparsely populated areas. Fully bre-based networks, whilst technically the most advanced solution, are prohibitively expensive to deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as a stepping-stone to a fully bre-based network, DSL operates over telephone lines that are already in place, minimizing the cost of deployment. The basic principle behind DSL technology is to increase data-rate by widening the transmission bandwidth. Unfortunately, operating at high frequencies, in a medium originally designed for voice-band transmission, leads to crosstalk between the di erent DSLs. Crosstalk is typically 10-15 dB larger than the background noise and is the dominant source of performance degradation ...
Cendrillon, Raphael — Katholieke Universiteit Leuven
Wideband Data-Independent Beamforming for Subarrays
The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element. As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At ...
Alshammary, Abdullah — University of Strathclyde
Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...
Luis Valero, Maria — International Audio Laboratories Erlangen
Adaptive Signal Processing for Power Line Communications
This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...
Tripodi, Carlo — Università degli Studi di Parma
On Ways to Improve Adaptive Filter Performance
Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...
Sankaran, Sundar G. — Virginia Tech
Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems
The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...
Cheema, Sher Ali — Technische Universität Ilmenau
Resource management and optimization in multi-user DSL systems
Digital subscriber line (DSL) technology is currently the most widely deployed broadband internet access technology and will continue to play an important role during the next decade. However, one of the major sources that limits the performance of current DSL systems is crosstalk, which is a channel distortion that is caused by the electromagnetic coupling among the different copper wires (DSL connections). Multi-user resource management is a very promising approach to prevent or even remove the impact of crosstalk, and that can significantly increase the performance of DSL systems. In this thesis, multiple efficient algorithms are proposed for multi-user resource management that only require a very low computational complexity and that can be applied to large-scale DSL systems. The application of these algorithms allows to significantly increase the data rates of DSL systems. It is furthermore shown that the proposed ...
Tsiaflakis, Paschalis — Katholieke Universiteit Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.