Signal processing of FMCW Synthetic Aperture Radar data (2006)
Analysis, Modelling, and Simulation of an Integrated Multisensor System for Maritime Border Control
In this dissertation a notional multi-sensor system acting in a maritime border control scenario for Homeland Security (HS) is analyzed, modelled, and simulated. The functions performed by the system are the detection, tracking, identification and classification of naval targets that enter a sea region, the evaluation of their threat level and the selection of a suitable reaction to them. The emulated system is composed of two platforms carrying multiple sensors: a land based platform, located on the coast, and an air platform, moving on an elliptic trajectory in front of the coast. The land based platform is equipped with a Vessel Traffic Service (VTS) radar, an infrared camera (IR) and a station belonging to an Automatic Identification System (AIS). The air platform carries an Airborne Early Warning Radar (AEWR) that can operate on a spotlight Synthetic Aperture Radar (SAR) mode, ...
Giompapa, Sofia — Universita di Pisa
Joint Sparsity-Driven Inversion and Model Error Correction for SAR Imaging
Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this thesis is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. In this technique, phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of ...
Önhon, N. Özben — Faculty of Engineering and Natural Sciences, Sabancı University
Distributed Localization and Tracking of Acoustic Sources
Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...
Dorfan, Yuval — Bar Ilan University
Theoretical aspects and real issues in an integrated multiradar system
In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...
Fortunati Stefano — University of Pisa
Sparse sensor arrays for active sensing - Array configurations and signal processing
Multisensor systems are a key enabling technology in, e.g., radar, sonar, medical ultrasound, and wireless communications. Using multiple sensors provides spatial selectivity, improves the signal-to-noise ratio, and enables rejecting unwanted interference. Conventional multisensor systems employ a simple array of uniformly spaced sensors with a linear or rectangular geometry. However, a uniform array spanning a large electrical aperture may become prohibitively expensive, as many sensors and costly RF-IF front ends are needed. In contrast, sparse sensor arrays require drastically fewer resources to achieve comparable performance in terms of spatial resolution and the number of identifiable scatterers or sources. This is facilitated by the co-array: a virtual array structure consisting of the pairwise differences or sums of physical sensor positions. Most recent works on co-array-based sparse array design focus exclusively on passive sensing. Active sensing, where sensors transmit signals and observe their ...
Robin Rajamäki — Aalto University
Modulation Spectrum Analysis for Noisy Electrocardiogram Signal Processing and Applications
Advances in wearable electrocardiogram (ECG) monitoring devices have allowed for new cardiovascular applications to emerge beyond diagnostics, such as stress and fatigue detection, athletic performance assessment, sleep disorder characterization, mood recognition, activity surveillance, biometrics, and fitness tracking, to name a few. Such devices, however, are prone to artifacts, particularly due to movement, thus hampering heart rate and heart rate variability measurement and posing a serious threat to cardiac monitoring applications. To address these issues, this thesis proposes the use of a spectro-temporal signal representation called “modulation spectrum”, which is shown to accurately separate cardiac and noise components from the ECG signals, thus opening doors for noise-robust ECG signal processing tools and applications. First, an innovative ECG quality index based on the modulation spectral signal representation is proposed. The representation quantifies the rate-of-change of ECG spectral components, which are shown to ...
Tobon Vallejo, Diana Patricia — INRS-EMT
Multichannel SAR Interferometry based on Statistical Signal Processing
Interferometric SAR systems allow to reconstruct height profile of earth surfaces. The height reconstruction is based on phase unwrapping operation, which is an ill-posed problem since it admits infinite number of solutions. The phase unwrapping problem can be solved using the multichannel InSAR approach, based on the combination of different images of the scene obtained by slightly different positions. An effective way to combine the different interferograms is using statistical estimation theory. In particular the Maximum Likelihood and Maximum a Posteriori multichannel approach have proved to be effective and to be able to restore the uniqueness of the solution. In this thesis the statistical multichannel phase unwrapping is deeply analyzed. In particular, instruments and methods to use InSAR multichannel configuration on real data and in urban areas are provided. Moreover, a new fast and efficient multichannel phase unwrapping algorithm is ...
Ferraioli, Giampaolo — Universita di Napoli Parthenope
Sigma Delta Modulation Of A Chaotic Signal
Sigma delta modulation has become a widespread method of analogue to digital conversion, however its operation has not been completely defined. The majority of the analysis carried out on the circuit has been from a linear standpoint, with non-linear analysis hinting at hidden complexities in the modulator’s operation. The sigma delta modulator itself is a non-linear system consisting, as it does, of a number of integrators and a one bit quantiser in a feedback loop. This configuration can be generalised as a non-linearity within a feedback path, which is a classic route to chaotic behaviour. This initially raises the prospect that a sigma delta modulator may be capable of chaotic modes of operation with a non-chaotic input. In fact, the problem does not arise and we show why not. To facilitate this investigation, a set of differential equations is formulated ...
Ushaw, Gary — University Of Edinburgh
Enabling Technologies and Cyber-Physical Systems for Mission-Critical Scenarios
Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: ...
Fraga-Lamas, Paula — University of A Coruña
Broadband adaptive beamforming with low complexity and frequency invariant response
This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation. A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save ...
Koh, Choo Leng — University of Southampton
Ultra Wideband Communications: from Analog to Digital
The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...
Song, Nuan — Ilmenau University of Technology
Compressive Sensing of Cyclostationary Propeller Noise
This dissertation is the combination of three manuscripts –either published in or submitted to journals– on compressive sensing of propeller noise for detection, identification and localization of water crafts. Propeller noise, as a result of rotating blades, is broadband and radiates through water dominating underwater acoustic noise spectrum especially when cavitation develops. Propeller cavitation yields cyclostationary noise which can be modeled by amplitude modulation, i.e., the envelope-carrier product. The envelope consists of the so-called propeller tonals representing propeller characteristics which is used to identify water crafts whereas the carrier is a stationary broadband process. Sampling for propeller noise processing yields large data sizes due to Nyquist rate and multiple sensor deployment. A compressive sensing scheme is proposed for efficient sampling of second-order cyclostationary propeller noise since the spectral correlation function of the amplitude modulation model is sparse as shown in ...
Fırat, Umut — Istanbul Technical University
An ever-increasing demand for higher mobility, capacity and reliability, together with a definitive compromise with sustainability, are the hallmarks of mobile and wireless communications systems nowadays. Under these premises, smart antenna devices -capable of sensing the electromagnetic environment and suitably adapting its radiation features- are correspondingly called to play a crucial role. In this sense, today's wireless standards consider multiple-antenna techniques in order to exploit space diversity, spatial multiplexing and beamforming to achieve better levels of reliability and capacity. Such advantages, however, are obtained at the expense of increased system complexity which may be unaffordable in terms of size and energy efficiency. Consequently, some technical challenges remain to develop the adequate antenna technologies capable of supporting the aforementioned features in a limited physical space that the mobility demand dictates. The concept of time-modulated array (TMA) is a feasible multi-antenna technique ...
Maneiro-Catoria, Roberto — University of A Coruña
Tracking and Planning for Surveillance Applications
Vision and infrared sensors are very common in surveillance and security applications, and there are numerous examples where a critical infrastructure, e.g. a harbor, an airport, or a military camp, is monitored by video surveillance systems. There is a need for automatic processing of sensor data and intelligent control of the sensor in order to obtain efficient and high performance solutions that can support a human operator. This thesis considers two subparts of the complex sensor fusion system; namely target tracking and sensor control.The multiple target tracking problem using particle filtering is studied. In particular, applications where road constrained targets are tracked with an airborne video or infrared camera are considered. By utilizing the information about the road network map it is possible to enhance the target tracking and prediction performance. A dynamic model suitable for on-road target tracking with ...
Skoglar, Per — Linköping University, Department of Electrical Engineering
Heart rate variability : linear and nonlinear analysis with applications in human physiology
Cardiovascular diseases are a growing problem in today’s society. The World Health Organization (WHO) reported that these diseases make up about 30% of total global deaths and that heart diseases have no geographic, gender or socioeconomic boundaries. Therefore, detecting cardiac irregularities early-stage and a correct treatment are very important. However, this requires a good physiological understanding of the cardiovascular system. The heart is stimulated electrically by the brain via the autonomic nervous system, where sympathetic and vagal pathways are always interacting and modulating heart rate. Continuous monitoring of the heart activity is obtained by means of an ElectroCardioGram (ECG). Studying the fluctuations of heart beat intervals over time reveals a lot of information and is called heart rate variability (HRV) analysis. A reduction of HRV has been reported in several cardiological and noncardiological diseases. Moreover, HRV also has a prognostic ...
Vandeput, Steven — KU Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.