Bayesian methods for sparse and low-rank matrix problems

Many scientific and engineering problems require us to process measurements and data in order to extract information. Since we base decisions on information, it is important to design accurate and efficient processing algorithms. This is often done by modeling the signal of interest and the noise in the problem. One type of modeling is Compressed Sensing, where the signal has a sparse or low-rank representation. In this thesis we study different approaches to designing algorithms for sparse and low-rank problems. Greedy methods are fast methods for sparse problems which iteratively detects and estimates the non-zero components. By modeling the detection problem as an array processing problem and a Bayesian filtering problem, we improve the detection accuracy. Bayesian methods approximate the sparsity by probability distributions which are iteratively modified. We show one approach to making the Bayesian method the Relevance Vector ...

Sundin, Martin — Department of Signal Processing, Royal Institute of Technology KTH


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven


Compressed sensing approaches to large-scale tensor decompositions

Today’s society is characterized by an abundance of data that is generated at an unprecedented velocity. However, much of this data is immediately thrown away by compression or information extraction. In a compressed sensing (CS) setting the inherent sparsity in many datasets is exploited by avoiding the acquisition of superfluous data in the first place. We combine this technique with tensors, or multiway arrays of numerical values, which are higher-order generalizations of vectors and matrices. As the number of entries scales exponentially in the order, tensor problems are often large-scale. We show that the combination of simple, low-rank tensor decompositions with CS effectively alleviates or even breaks the so-called curse of dimensionality. After discussing the larger data fusion optimization framework for coupled and constrained tensor decompositions, we investigate three categories of CS type algorithms to deal with large-scale problems. First, ...

Vervliet, Nico — KU Leuven


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Tensor Decompositions and Algorithms for Efficient Multidimensional Signal Processing

Due to the extensive growth of big data applications, the widespread use of multisensor technologies, and the need for efficient data representations, multidimensional techniques are a primary tool for many signal processing applications. Multidimensional arrays or tensors allow a natural representation of high-dimensional data. Therefore, they are particularly suited for tasks involving multi-modal data sources such as biomedical sensor readings or multiple-input and multiple-output (MIMO) antenna arrays. While tensor-based techniques were still in their infancy several decades ago, nowadays, they have already proven their effectiveness in various applications. There are many different tensor decompositions in the literature, and each finds use in diverse signal processing fields. In this thesis, we focus on two tensor factorization models: the rank-(Lr,Lr,1) Block-Term Decomposition (BTD) and the Multilinear Generalized Singular Value Decomposition (ML-GSVD) that we propose in this thesis. The ML-GSVD is an extension ...

Khamidullina, Liana — Technische Universität Ilmenau


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Cost functions for acoustic filters estimations in reverberant mixtures

This work is focused on the processing of multichannel and multisource audio signals. From an audio mixture of several audio sources recorded in a reverberant room, we wish to es- timate the acoustic responses (a.k.a. mixing filters) between the sources and the microphones. To solve this inverse problem one need to take into account additional hypotheses on the nature of the acoustic responses. Our approach consists in first identifying mathematically the neces- sary hypotheses on the acoustic responses for their estimation and then building cost functions and algorithms to effectively estimate them. First, we considered the case where the source signals are known. We developed a method to estimate the acoustic responses based on a convex regularization which exploits both the temporal sparsity of the filters and the exponentially decaying envelope. Real-world experi- ments confirmed the effectiveness of this method ...

Benichoux, Alexis — Université Rennes I


Feedback Delay Networks in Artificial Reverberation and Reverberation Enhancement

In today's audio production and reproduction as well as in music performance practices it has become common practice to alter reverberation artificially through electronics or electro-acoustics. For music productions, radio plays, and movie soundtracks, the sound is often captured in small studio spaces with little to no reverberation to save real estate and to ensure a controlled environment such that the artistically intended spatial impression can be added during post-production. Spatial sound reproduction systems require flexible adjustment of artificial reverberation to the diffuse sound portion to help the reconstruction of the spatial impression. Many modern performance spaces are multi-purpose, and the reverberation needs to be adjustable to the desired performance style. Employing electro-acoustic feedback, also known as Reverberation Enhancement Systems (RESs), it is possible to extend the physical to the desired reverberation. These examples demonstrate a wide range of applications ...

Schlecht, Sebastian Jiro — Friedrich-Alexander-Universität Erlangen-Nürnberg


Three-Dimensional Digital Waveguide Mesh Modelling for Room Acoustic Simulation

Accurate auralisation remains the Holy Grail of room acoustics. Until now the models used for room impulse response (RIR) simulation have been either impractical to use due to excessive computational loading or based upon simplified approaches, unable to provide the levels of perceptual accuracy required by many applications. An example is the archaeological acoustic investigation of the intriguing properties of Neolithic passage graves such as Newgrange. After reviewing the currently available options, this thesis concentrates on digital waveguide mesh (DWM) physical modelling, on the premise that the three-dimensional (3D) version of this technique can be developed to provide the desired accuracy with reasonable computation times. Various 3D-mesh topologies, namely rectilinear, tetrahedral, octahedral and cubic close-packed (CCP), are analysed. Room simulation packages have been implemented for the rectilinear and tetrahedral topologies. Both are capable of generating highly scalable parallel models through ...

Campos, Guilherme — University of York / Department of Electronics


Massive MIMO and Multi-hop Mobile Communication Systems

Since the late 1990s, massive multiple-input multiple-output (MIMO) has been suggested to improve the achievable data rate in wireless communication systems. To overcome the high path losses in the high frequency bands, the use of massive MIMO will be a must rather than an option in future wireless communication systems. At the same time, due to the high cost and high energy consumption of the traditional fully digital beamforming architecture, a new beamforming architecture is required. Among the proposed solutions, the hybrid analog digital (HAD) beamforming architecture has received considerable attention. The promising massive MIMO gains heavily rely on the availability of accurate channel state information (CSI). This thesis considers a wideband massive MIMO orthogonal frequency division multiplexing (OFDM) system. We propose a channel estimation method called sequential alternating least squares approximation (SALSA) by exploiting a hidden tensor structure in ...

Gherekhloo, Sepideh — Technische Universität Ilmenau


Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...

Roemer, Florian — Ilmenau University of Technology


Tensor-Based Approaches for Channel Estimation in IRS-Assisted MIMO Wireless Communications

The fifth-generation (5G) is in its business version, and researchers have started to look at the potential technologies to be employed in the next generation. In this context, intelligent reflecting surface (IRS) is a promising technology for the sixth-generation (6G) of wireless systems by introducing the smart radio environment concept. The promised gains of IRS-assisted communications depend on the accuracy of the channel state information. Using a tensor framework, particularly tensor decomposition, we propose different solutions to solve the channel estimation problem for different scenarios. We firstly address the receiver design for an IRS-assisted multiple-input multiple-output (MIMO) communication system via a tensor modeling approach to solve the channel estimation problem using supervised (pilot-assisted) methods. Considering a structured time-domain pattern of pilots and IRS phase shifts, we present two channel estimation methods that rely on a parallel factors (PARAFAC) tensor modeling ...

de Araújo, Gilderlan Tavares — Federal University of Ceara


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


SIGNAL PROCESSING OVER DYNAMIC GRAPHS

Extending the concepts of classical signal processing to graphs, a wide array of methods have come to the fore, including filtering, reconstruction, classification, and sampling. Existing approaches in graph signal processing consider a known and static topology, i.e., fixed number of nodes and a fixed edge support. Two types of tasks stand out, namely, topology inference, where the edge support along with their weights are estimated from signals; and data processing, where existing data and the known topology are used to perform different tasks. However, such tasks become quite challenging when the network size and support changes over time. Particularly, these challenges involve adapting to the changing topology, data distributions and dealing with unknown topological information. The latter manifests for example, when new nodes are available to attach to the graph but their connectivity is uncertain as is the case ...

Das, Bishwadeep — TU Delft

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.