An enhanced sensitivity procedure for continuous gravitational wave detection: targeting the Galactic Center

The recent announcement by the LIGO and Virgo Collaborations of the direct detection of gravitational waves started the era of gravitational wave astrophysics. Up to now there have been five confirmed detections (GW150914, GW151226, GW170104, GW170814 and GW170817). Each of the GW events detected so far, shed light on multiple aspects of gravity. The first four events were due to the coalescence of a binary black hole system. August 17th 2017 marked the beginning of the so-called Multi-Messenger astronomy: the binary neutron star merger GW170817 has been observed almost simultaneously by LIGO and Virgo interferometers and several telescopes in space and on Earth, which detected the electromagnetic counterpart of this event (first as a short gamma-ray burst, GRB 170817A, and then in the visible, infra-red and X-ray bands). These last two years of great scientific discoveries would not have been ...

Piccinni, Ornella Juliana — Sapienza University, INFN Roma1


Tradeoffs and limitations in statistically based image reconstruction problems

Advanced nuclear medical imaging systems collect multiple attributes of a large number of photon events, resulting in extremely large datasets which present challenges to image reconstruction and assessment. This dissertation addresses several of these challenges. The image formation process in nuclear medical imaging can be posed as a parametric estimation problem where the image pixels are the parameters of interest. Since nuclear medical imaging applications are often ill-posed inverse problems, unbiased estimators result in very noisy, high-variance images. Typically, smoothness constraints and a priori information are used to reduce variance in medical imaging applications at the cost of biasing the estimator. For such problems, there exists an inherent tradeoff between the recovered spatial resolution of an estimator, overall bias, and its statistical variance; lower variance can only be bought at the price of decreased spatial resolution and/or increased overall bias. ...

Kragh, Tom — University of Michigan


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Large-Scale Light Field Capture and Reconstruction

This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. ...

Gao, Yuan — Department of Computer Science, Kiel University


Statistical methods using hydrodynamic simulations of stellar atmospheres for detecting exoplanets in radial velocity data

When the noise affecting time series is colored with unknown statistics, a difficulty for periodic signal detection is to control the true significance level at which the detection tests are conducted. This thesis investigates the possibility of using training datasets of the noise to improve this control. Specifically, for the case of regularly sampled observations, we analyze the performances of various detectors applied to periodograms standardized using the noise training datasets. Emphasis is put on sparse detection in the Fourier domain and on the limitation posed by the necessary finite size of the training sets available in practice. We study the resulting false alarm and detection rates and show that the proposed standardization leads, in some cases, to powerful constant false alarm rate tests. Although analytical results are derived in an asymptotic regime, numerical results show that the theory accurately ...

Sulis Sophia — Université Côte d’Azur


Image quality in context

An analysis of the ergonomic quality of the current standards for the visual display quality leads to a number of recommendations for the development of new international standards: - Separation for different types of users, esp. display designers, purchasers, and end users, -Independence of display technology to allow comparison, -Modular construction with several quality grades to allow benchmarking for different types of applications, -A test method for the end user standard that can be performed at the place of work, to take into account the effects of wear and drift of components and to be able to correct suboptimal configurations. The separate parameters that exert influence on the image quality of a broad category of images in the context of use, and their mutual coherence within the cycle of evaluation and adaptation of image quality are presented in the "Image ...

Besuijen, Jacobus — Delft University of Technology


Single-pixel imaging: development and applications of adaptive methods

Single-pixel imaging is a recent paradigm that allows the acquisition of images at reasonably low cost by exploiting hardware compression of the data. The architecture of a single-pixel camera consists of only two elements: a spatial light modulator, and a single-point detector. The key idea is to measure the projection at the detector (i.e., the inner product) of the scene under view -the image- with some patterns. The post-processing of a sequence of measurements obtained with different patterns permits the restoring of the desired image. Single-pixel imaging has several advantages, which are of interest for different applications, and especially in the biomedical field. In particular, a time-resolved single-pixel imaging system benefits fluorescence lifetime sensing. Such a set-up can be coupled to a spectrometer, to supplement the lifetime with spectral information. However, the main limitation of single-pixel imaging is the speed ...

Rousset, Florian — University of Lyon - Politecnico di Milan


Fish-Eye Observing with Phased Array Radio Telescopes

The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototypes show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

Wijnholds, Stefan J. — Delft University of Technology


Robust Methods for Sensing and Reconstructing Sparse Signals

Compressed sensing (CS) is a recently introduced signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are developed assuming a Gaussian (light-tailed) model for the corrupting noise. However, when the underlying signal and/or the measurements are corrupted by impulsive noise, commonly employed linear sampling operators, coupled with Gaussian-derived reconstruction algorithms, fail to recover a close approximation of the signal. This dissertation develops robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. To achieve this objective, we make use of robust statistics theory to develop appropriate methods addressing the problem of impulsive noise in CS systems. We develop a generalized Cauchy distribution (GCD) ...

Carrillo, Rafael — University of Delaware


Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques

Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...

Trimeche, Mejdi — Tampere University of Technology


Efficient representation, generation and compression of digital holograms

Digital holography is a discipline of science that measures or reconstructs the wavefield of light by means of interference. The wavefield encodes three-dimensional information, which has many applications, such as interferometry, microscopy, non-destructive testing and data storage. Moreover, digital holography is emerging as a display technology. Holograms can recreate the wavefield of a 3D object, thereby reproducing all depth cues for all viewpoints, unlike current stereoscopic 3D displays. At high quality, the appearance of an object on a holographic display system becomes indistinguishable from a real one. High-quality holograms need large volumes of data to be represented, approaching resolutions of billions of pixels. For holographic videos, the data rates needed for transmitting and encoding of the raw holograms quickly become unfeasible with currently available hardware. Efficient generation and coding of holograms will be of utmost importance for future holographic displays. ...

Blinder, David — Vrije Universiteit Brussel


Robust Speech Recognition on Intelligent Mobile Devices with Dual-Microphone

Despite the outstanding progress made on automatic speech recognition (ASR) throughout the last decades, noise-robust ASR still poses a challenge. Tackling with acoustic noise in ASR systems is more important than ever before for a twofold reason: 1) ASR technology has begun to be extensively integrated in intelligent mobile devices (IMDs) such as smartphones to easily accomplish different tasks (e.g. search-by-voice), and 2) IMDs can be used anywhere at any time, that is, under many different acoustic (noisy) conditions. On the other hand, with the aim of enhancing noisy speech, IMDs have begun to embed small microphone arrays, i.e. microphone arrays comprised of a few sensors close each other. These multi-sensor IMDs often embed one microphone (usually at their rear) intended to capture the acoustic environment more than the speaker’s voice. This is the so-called secondary microphone. While classical microphone ...

López-Espejo, Iván — University of Granada


Light Field Based Biometric Recognition and Presentation Attack Detection

In a world where security issues have been gaining explosive importance, face and ear recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. While the recognition performance has been steadily improving, there are still challenging recognition scenarios and conditions, notably when facing large variations in the biometric data characteristics. Additionally, the widespread use of face and ear recognition solutions raises new security concerns, making the robustness against presentation attacks a very active field of research. Lenslet light field cameras have recently come into prominence as they are able to also capture the intensity of the light rays coming from multiple directions, thus offering a richer representation of the visual scene, notably spatio-angular information. To take benefit of this richer representation, light field cameras have recently been successfully applied, not only ...

Alireza Sepas-Moghaddam — Instituto Superior Técnico, University of Lisbon


Bayesian Compressed Sensing using Alpha-Stable Distributions

During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...

Tzagkarakis, George — University of Crete


Model-based iterative reconstruction algorithms for computed tomography

Computed Tomography (CT) is a powerful tool for non-destructive imaging in which an object's interior is visualized by reconstructing a set of projection images. The technique can be applied in various modalities, ranging from a typical X-ray CT scanner to electron microscopy and synchrotron beamlines. Often, only limited projection data is available, which makes the reconstruction process more dicult and results in reconstruction artifacts if standard techniques are employed. Limited data problems can arise in a variety of applications. In medical CT, the acquisition of only a limited number of projections is bene cial to reduce the radiation dose delivered to the patient. In electron tomography, the sample can only be rotated over a limited tilt range due to mechanical constraints and the number of acquisition angles is often relatively small to avoid beam damage. In dynamic CT, the time ...

Geert Van Eyndhoven — University of Antwerp

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.