Development of a Framework to Enhance BVOC Imaging (2025)
Robust Signal Processing with Applications to Positioning and Imaging
This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...
Li, Haoqing — Northeastern University
Microphone arrays for imaging of aerospace noise sources
With the continuous growth in demand for air traffic and wind turbines, the noise emissions they generate are becoming an increasingly important issue. To reduce their noise levels, it is essential to obtain accurate information about all the sound sources present. Phased microphone arrays and acoustic imaging methods allow for the estimation of the location and strength of sound sources. Experiments with these devices are one of the main approaches in the current research in aeroacoustics, along with computational simulations or noise prediction models. This thesis presents a detailed literature review on the most common aerospace noise sources, challenges in aeroacoustic measurements, and the acoustic imaging methods typically used to overcome them. Practical recommendations are provided for selecting the appropriate imaging technique depending on the type of experiment. New integration techniques for distributed sound sources, such as leading– or trailing–edge ...
Merino-Martinez, Roberto — Delft University of Technology
Novel Signal Processing Techniques For The Exploitation Of Thermal Hyperspectral Data
THIS doctoral thesis attemps to propose a novel signal processing chain, aimed to exploit data acquired by long wave infrared (LWIR) hyperspectral sensors. In the LWIR, infrared radiation from an object is directly related to its temperature, i.e. hotter the surface, higher the emitted thermal energy. Hyperspectral sensors capture the radiated energy from the objects (target) in a large number of consecutive spectral bands within the LWIR, e.g. with the aid of a prism, in order to estimate the spectrum(spectral emissivity) and the temperature of the surface material. In this framework, two main challenging tasks affect the development and the deployment of thermal hyperspectral sensors: - atmospheric correction: the process of estimate and compensate the thermal radiation produced by the atmosphere, that affects the thermal radiation procuded by the target. This process is made more complicated by the complex combination ...
Moscadelli, Matteo — University of Pisa
Tradeoffs and limitations in statistically based image reconstruction problems
Advanced nuclear medical imaging systems collect multiple attributes of a large number of photon events, resulting in extremely large datasets which present challenges to image reconstruction and assessment. This dissertation addresses several of these challenges. The image formation process in nuclear medical imaging can be posed as a parametric estimation problem where the image pixels are the parameters of interest. Since nuclear medical imaging applications are often ill-posed inverse problems, unbiased estimators result in very noisy, high-variance images. Typically, smoothness constraints and a priori information are used to reduce variance in medical imaging applications at the cost of biasing the estimator. For such problems, there exists an inherent tradeoff between the recovered spatial resolution of an estimator, overall bias, and its statistical variance; lower variance can only be bought at the price of decreased spatial resolution and/or increased overall bias. ...
Kragh, Tom — University of Michigan
The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution statistical data model and a multiresolution constrained prior model. They enable the integration of segmentation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior term balances the effect of the generic prior knowledge carried by ...
Peng, Ting — Project-Team Ariana (INRIA-Sophia Antipolis, France); LIAMA (CASIA, China)
Modeling Perceived Quality for Imaging Applications
People of all generations are making more and more use of digital imaging systems in their daily lives. The image content rendered by these digital imaging systems largely differs in perceived quality depending on the system and its applications. To be able to optimize the experience of viewers of this content understanding and modeling perceived image quality is essential. Research on modeling image quality in a full-reference framework --- where the original content can be used as a reference --- is well established in literature. In many current applications, however, the perceived image quality needs to be modeled in a no-reference framework at real-time. As a consequence, the model needs to quantitatively predict perceived quality of a degraded image without being able to compare it to its original version, and has to achieve this with limited computational complexity in order ...
Liu, Hantao — Delft University of Technology
Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques
Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...
Trimeche, Mejdi — Tampere University of Technology
Disentanglement for improved data-driven modeling of dynamical systems
Modeling dynamical systems is a fundamental task in various scientific and engineering domains, requiring accurate predictions, robustness to varying conditions, and interpretability of the underlying mechanisms. Traditional data-driven approaches often struggle with long-term prediction accuracy, generalization to out-of-distribution (OOD) scenarios, and providing insights into the system's behavior. This thesis explores the integration of supervised disentanglement into deep learning models as a means to address these challenges. We begin by advancing the state-of-the-art in modeling wave propagation governed by the Saint-Venant equations. Utilizing U-Net architectures and purposefully designed training strategies, we develop deep learning models that significantly improve prediction accuracy. Through OOD analysis, we highlight the limitations of standard deep learning models in capturing complex spatiotemporal dynamics, demonstrating how integrating domain knowledge through architectural design and training practices can enhance model performance. We further extend our supervised disentanglement approach to high-dimensional ...
Stathi Fotiadis — Imperial College London
Spatio-temporal Prediction of Wind Fields
Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatio-temporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex umbers. In a further development, the VAR coefficients are ...
Dowell, Jethro — University of Strathclyde
FMCW Radar Applications for Automotive and Biomedical Applications
Frequency Modulated Continuous Wave (FMCW) radar has emerged as a powerful sensing modality in both automotive and biomedical applications due to its ability to provide precise range, velocity, and Doppler measurements. This dissertation investigates novel methodologies to enhance FMCW radar's effectiveness in two critical domains: (1) forward-looking Synthetic Aperture Radar (SAR) imaging for automotive applications, and (2) biomedical monitoring for non-contact vital sign estimation and dehydration assessment. The proposed approaches leverage advanced signal processing, deep learning, and MIMO radar techniques to improve spatial resolution, classification accuracy, and robustness in real-world scenarios. In the automotive domain, the research focuses on improving the azimuthal resolution of forward-looking SAR imaging by incorporating MIMO radar and deep learning-based reconstruction methods. Two key methodologies are proposed to address the resolution limitations of conventional SAR imaging techniques. The first approach employs an unsupervised Deep Basis Pursuit ...
Vijith Varma Kotte — King Abdullah University of Science and Technology
ROBUST WATERMARKING TECHNIQUES FOR SCALABLE CODED IMAGE AND VIDEO
In scalable image/video coding, high resolution content is encoded to the highest visual quality and the bit-streams are adapted to cater various communication channels, display devices and usage requirements. These content adaptations, which include quality, resolution and frame rate scaling may also affect the content protection data, such as, watermarks and are considered as a potential watermark attack. In this thesis, research on robust watermarking techniques for scalable coded image and video, are proposed and the improvements in robustness against various content adaptation attacks, such as, JPEG 2000 for image and Motion JPEG 2000, MC-EZBC and H.264/SVC for video, are reported. The spread spectrum domain, particularly wavelet-based image watermarking schemes often provides better robustness to compression attacks due to its multi-resolution decomposition and hence chosen for this work. A comprehensive and comparative analysis of the available wavelet-based watermarking schemes,is performed ...
Bhowmik, Deepayan — University of Sheffield
Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences
This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...
Pham, Tuan Q. — Delft University of Technology
Multi-Sensor Integration for Indoor 3D Reconstruction
Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...
Chow, Jacky — University of Calgary
Deep learning for semantic description of visual human traits
The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...
Antipov, Grigory — Télécom ParisTech (Eurecom)
GNSS Localization and Attitude Determination via Optimization Techniques on Riemannian Manifolds
Global Navigation Satellite Systems (GNSS)-based localization and attitude determination are essential for many navigation and control systems widely used in aircrafts, spacecrafts, vessels, automobiles, and other dynamic platforms. A GNSS receiver can generate pseudo-range and carrier-phase observations based on the signals transmitted from the navigation satellites. Since the accuracy of the carrier phase is two orders of magnitude higher than that of the pseudo-range, it is crucial to employ the precise GNSS data, the carrier phase, to perform a high-accuracy position or/and attitude estimate. The main challenge to fully utilizing carrier-phase observations is to successfully resolve the unknown integer parts (number of whole cycles), a process usually referred to as integer ambiguity resolution. Many methods have been developed to resolve integer ambiguities with different performance offerings. Under challenging environments with insufficient tracked satellites, significant multipath interference, and severe atmospheric effects, ...
Xing Liu — King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.