Post-Selection Estimation Theory (2024)
Adaptive interference suppression algorithms for DS-UWB systems
In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...
Sheng Li — University of York
Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning
This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...
Closas, Pau — Universitat Politecnica de Catalunya
Effects of Model Misspecification and Uncertainty on the Performance of Estimators
System designers across all disciplines of technology face the need to develop machines capable of independently processing and analyzing data and predicting future data. This is the fundamental problem of interest in “estimation theory,” wherein probabilistic analyses are used to isolate relationships between variables, and in “statistical inference,” wherein those variables are used to make inferences about real-world quantities. In practice, all estimators are designed based on limited statistical generalizations about the behavior of the observed and latent variables of interest; however, these models are rarely fully representative of reality. In such cases, there exists a “model misspecification,” and the resulting estimators will produce results that differ from those of the properly specified estimators. Evaluating the performance of a given estimator may sometimes be done by direct comparison of estimator outputs to known ground truth. However, in many cases, there ...
LaMountain, Gerald — Northeastern University
Robust Estimation and Model Order Selection for Signal Processing
In this thesis, advanced robust estimation methodologies for signal processing are developed and analyzed. The developed methodologies solve problems concerning multi-sensor data, robust model selection as well as robustness for dependent data. The work has been applied to solve practical signal processing problems in different areas of biomedical and array signal processing. In particular, for univariate independent data, a robust criterion is presented to select the model order with an application to corneal-height data modeling. The proposed criterion overcomes some limitations of existing robust criteria. For real-world data, it selects the radial model order of the Zernike polynomial of the corneal topography map in accordance with clinical expectations, even if the measurement conditions for the videokeratoscopy, which is the state-of-the-art method to collect corneal-height data, are poor. For multi-sensor data, robust model order selection selection criteria are proposed and applied ...
Muma, Michael — Technische Universität Darmstadt
The Multivariable Decision Feedback Equalizer - Multiuser Detection and Interference Rejection
The multivariable decision feedback equalizer is investigated as a tool for multiuser detection and interference rejection. Three different DFE structures are introduced. The first DFE has a non-causal feedforward filter and a causal feedback filter. We show how its parameters can be tuned to give a minimum mean-square error. The second DFE is derived under the constraint of realizability. The explicit structure and design equations for an optimum realizable minimum mean-square error DFE are obtained. The zero-forcing criterion is also considered, and conditions for the existence of a zero-forcing solution are derived. We then consider a DFE where both feedforward and feedback filters are FIR filters of predetermined degrees. We discuss the tuning procedure for obtaining the parameters of a minimum mean-square error DFE and present the conditions for the existence of a zero-forcing solution. Two specific applications are considered ...
Tidestav, Claes — Uppsala University
Radial Basis Function Network Robust Learning Algorithms in Computer Vision Applications
This thesis introduces new learning algorithms for Radial Basis Function (RBF) networks. RBF networks is a feed-forward two-layer neural network used for functional approximation or pattern classification applications. The proposed training algorithms are based on robust statistics. Their theoretical performance has been assessed and compared with that of classical algorithms for training RBF networks. The applications of RBF networks described in this thesis consist of simultaneously modeling moving object segmentation and optical flow estimation in image sequences and 3-D image modeling and segmentation. A Bayesian classifier model is used for the representation of the image sequence and 3-D images. This employs an energy based description of the probability functions involved. The energy functions are represented by RBF networks whose inputs are various features drawn from the images and whose outputs are objects. The hidden units embed kernel functions. Each kernel ...
Bors, Adrian G. — Aristotle University of Thessaloniki
Massive MIMO and Multi-hop Mobile Communication Systems
Since the late 1990s, massive multiple-input multiple-output (MIMO) has been suggested to improve the achievable data rate in wireless communication systems. To overcome the high path losses in the high frequency bands, the use of massive MIMO will be a must rather than an option in future wireless communication systems. At the same time, due to the high cost and high energy consumption of the traditional fully digital beamforming architecture, a new beamforming architecture is required. Among the proposed solutions, the hybrid analog digital (HAD) beamforming architecture has received considerable attention. The promising massive MIMO gains heavily rely on the availability of accurate channel state information (CSI). This thesis considers a wideband massive MIMO orthogonal frequency division multiplexing (OFDM) system. We propose a channel estimation method called sequential alternating least squares approximation (SALSA) by exploiting a hidden tensor structure in ...
Gherekhloo, Sepideh — Technische Universität Ilmenau
Wireless Network Localization via Cooperation
This dissertation details two classes of cooperative localization methods for wireless networks in mixed line-of-sight and non-line-of-sight (LOS/NLOS) environments. The classes of methods depend on the amount of prior knowledge available. The methods used for both classes are based on the assumptions in practical localization environments that neither NLOS identification nor experimental campaigns are affordable. Two major contributions are, first, in methods that provide satisfactory localization accuracy whilst relaxing the requirement on statistical knowledge about the measurement model. Second, in methods that provide significantly improved localization performance without the requirement of good initialization. In the first half of the dissertation, cooperative localization using received signal strength (RSS) measurements in homogeneous mixed LOS/NLOS environments is considered for the case where the key model parameter, the path loss exponent, is unknown. The approach taken is to model the positions and the path ...
Jin, Di — Signal Processing Group, Technische Universität Darmstadt
Antenna Array Processing: Autocalibration and Fast High-Resolution Methods for Automotive Radar
In this thesis, advanced techniques for antenna array processing are addressed. The problem of autocalibration is considered and a novel method for a two-dimensional array is developed. Moreover, practicable methods for high-resolution direction-of-arrival (DOA) estimation and detection in automotive radar are proposed. A precise model of the array response is required to maintain the performance of DOA estimation. When the sensor environment is time-varying, this can only be achieved with autocalibration. The fundamental problem of autocalibration of an unknown phase response for uniform rectangular arrays is considered. For the case with a single source, a simple and robust least squares algorithm for joint two-dimensional DOA estimation and phase calibration is developed. An identification problem is determined and a suitable constraint is proposed. Simulation results show that the performance of the proposed estimator is close to the approximate CRB for both ...
Heidenreich, Philipp — Technische Universität Darmstadt
Sequential Bayesian Modeling of non-stationary signals
are involved until the development of Sequential Monte Carlo techniques which are also known as the particle filters. In particle filtering, the problem is expressed in terms of state-space equations where the linearity and Gaussianity requirements of the Kalman filtering are generalized. Therefore, we need information about the functional form of the state variations. In this thesis, we bring a general solution for the cases where these variations are unknown and the process distributions cannot be expressed by any closed form probability density function. Here, we propose a novel modeling scheme which is as unified as possible to cover all these problems. Therefore we study the performance analysis of our unifying particle filtering methodology on non-stationary Alpha Stable process modeling. It is well known that the probability density functions of these processes cannot be expressed in closed form, except for ...
Gencaga, Deniz — Bogazici University
Exploiting Sparse Structures in Source Localization and Tracking
This thesis deals with the modeling of structured signals under different sparsity constraints. Many phenomena exhibit an inherent structure that may be exploited when setting up models, examples include audio waves, radar, sonar, and image objects. These structures allow us to model, identify, and classify the processes, enabling parameter estimation for, e.g., identification, localisation, and tracking. In this work, such structures are exploited, with the goal to achieve efficient localisation and tracking of a structured source signal. Specifically, two scenarios are considered. In papers A and B, the aim is to find a sparse subset of a structured signal such that the signal parameters and source locations may be estimated in an optimal way. For the sparse subset selection, a combinatorial optimization problem is approximately solved by means of convex relaxation, with the results of allowing for different types of ...
Juhlin, Maria — Lund University
State and Parameter Estimation for Dynamic Systems: Some Investigations
This dissertation presents the outcome of investigations which envisaged to develop improved state and ‘combined state and parameter’ estimation algorithms for nonlinear signal models (during the contingent situations) where the complete knowledge of process and/or measurement noise covariance are not available. Variants of “adaptive nonlinear estimators” capable of providing satisfactory estimation results in the face of unknown noise covariance have been proposed in this dissertation. The proposed adaptive nonlinear estimators incorporate adaptation algorithms with which they can implicitly or explicitly, estimate unknown noise covariances along with estimation of states and parameters. Adaptation algorithms have been mathematically derived following different methods of adaptation which include Maximum Likelihood Estimation (MLE), Covariance Matching method and Maximum a Posteriori (MAP) method. The adaptive nonlinear estimators which have been proposed in this dissertation are formulated with the help of a general framework for adaptive nonlinear ...
Aritro Dey — Jadavpur University
This thesis addresses a number of problems all related to parameter estimation in sensor array processing. The unifying theme is that some of these parameters are known before the measurements are acquired. We thus study how to improve the estimation of the unknown parameters by incorporating the knowledge of the known parameters; exploiting this knowledge successfully has the potential to dramatically improve the accuracy of the estimates. For covariance matrix estimation, we exploit that the true covariance matrix is Kronecker and Toeplitz structured. We then devise a method to ascertain that the estimates possess this structure. Additionally, we can show that our proposed estimator has better performance than the state-of-art when the number of samples is low, and that it is also efficient in the sense that the estimates have Cramér-Rao lower Bound (CRB) equivalent variance. In the direction of ...
Wirfält, Petter — KTH Royal Institute of Technology
Partial Relaxation: A Computationally Efficient Direction-of-Arrival Estimation Framework
Direction-of-Arrival (DOA) estimation from data collected at a sensor array in the presence of noise has been a fundamental and long-established research topic of interest in sensor array processing. The application of DOA estimation does not only restrict to radar but also spans multiple additional fields of research, including radio astronomy, biomedical imaging, seismic exploration, wireless communication, among others. Due to the wide applications of DOA estimation, various methods have been developed in the literature to increase the resolution capability, computational efficiency, and robustness of the algorithms. However, a trade-off between the estimation performance and the computational complexity is generally inevitable. This thesis addresses the challenge of developing low-complexity DOA estimators with the ability to resolve closely spaced source signals in the threshold region, i.e., low sample size or low Signal-to-Noise ratio. Motivated by various interpretations of the conventional DOA ...
Trinh Hoang, Minh — Technical University of Darmstadt
On Ways to Improve Adaptive Filter Performance
Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...
Sankaran, Sundar G. — Virginia Tech
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.