Characterization of the neurometabolic coupling in the premature brain using NIRS and EEG

Every year, an estimated 15 million babies are born preterm, that is, before 37 weeks of gestation. This number is rising in all countries and currently represents more than 1 in 10 babies, affecting families all over the world. During the last decades, the survival rate of prematurely born neonates has steadily increased, mainly as a result of medical and technical progress in neonatal intensive care. The very preterm infants, which represent up to 10% of the preterm infants in the EU, remain at risk for adverse outcome and neurodevelopmental disability. These maladaptive outcomes have a severe effect on the children’s quality of life and a huge economic impact on society. In order to reduce this burden and improve neonatal care in general, appropriate tools need to be developed to identify the neonates with a higher risk of adverse outcomes. ...

Hendrikx, Dries — KU Leuven


Advanced solutions for neonatal analysis and the effects of maturation

Worldwide approximately 11% of the babies are born before 37 weeks of gestation. The survival rates of these prematurely born infants have steadily increased during the last decades as a result of the technical and medical progress in the neonatal intensive care units (NICUs). The focus of the NICUs has therefore gradually evolved from increasing life chances to improving quality of life. In this respect, promoting and supporting optimal brain development is crucial. Because these neonates are born during a period of rapid growth and development of the brain, they are susceptible to brain damage and therefore vulnerable to adverse neurodevelopmental outcome. In order to identify patients at risk of long-term disabilities, close monitoring of the neurological function during the first critical weeks is a primary concern in the current NICUs. Electroencephalography (EEG) is a valuable tool for continuous noninvasive ...

De Wel, Ofelie — KU Leuven


Automated quantification of preterm brain maturation using electroencephalography

Around 10 percent of all human births is premature, which means that annually about 15 million babies are born before 37 completed weeks of gestation. About one third of the admissions to the Neonatal Intensive Care Unit (NICU) consists of this patient group. Due to complications, 1 million babies die from premature delivery, and it is therefore the most important cause of neonatal death. In general, premature and immature babies have a high risk for neurological abnormalities by maturation in extra-uterine life. Even though improved health care has increased the survival changes of these neonates, they are sensitive to brain damage and consequently, neurocognitive disabilities. Nowadays, critical information about the brain development can be extracted from the electroencephalography (EEG). Clinical experts visually assess evolving EEG characteristics over both short and long periods to evaluate maturation of patients at risk and, ...

Koolen, Ninah — KU Leuven


Methods for functional connectivity and morphometry in neonatal neuroimaging to study neurodevelopment

Preterm birth is a major pediatric health problem that perturbs the genetically determined program of corticogenesis of the developing brain. As a consequence, prematurity has been strongly associated with adverse long-term neurodevelopmental outcome that may persist even into adulthood. Early characterization of the underlying neuronal mechanisms and early identification of infants at risk is of paramount importance since it allows better development of early therapeutic interventions aiming to prevent adverse outcomes through resilience. This dissertation aims to investigate the consequences of preterm birth on brain function and structure and their relation to adverse neurodevelopmental outcome, as well as to unveil the effect of an early music intervention on brain function. Research to date has mainly focused on the effect of early interventions on the long-term outcome but not on the effect of those interventions on brain function in preterm populations. ...

Loukas, Serafeim — Swiss Federal Institute of Technology Lausanne (EPFL)


Heart rate variability : linear and nonlinear analysis with applications in human physiology

Cardiovascular diseases are a growing problem in today’s society. The World Health Organization (WHO) reported that these diseases make up about 30% of total global deaths and that heart diseases have no geographic, gender or socioeconomic boundaries. Therefore, detecting cardiac irregularities early-stage and a correct treatment are very important. However, this requires a good physiological understanding of the cardiovascular system. The heart is stimulated electrically by the brain via the autonomic nervous system, where sympathetic and vagal pathways are always interacting and modulating heart rate. Continuous monitoring of the heart activity is obtained by means of an ElectroCardioGram (ECG). Studying the fluctuations of heart beat intervals over time reveals a lot of information and is called heart rate variability (HRV) analysis. A reduction of HRV has been reported in several cardiological and noncardiological diseases. Moreover, HRV also has a prognostic ...

Vandeput, Steven — KU Leuven


Monitoring Infants by Automatic Video Processing

This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 2‰ live births, 11‰ for preterm ...

Cattani Luca — University of Parma (Italy)


Development of an automated neonatal EEG seizure monitor

Brain function requires a continuous flow of oxygen and glucose. An insufficient supply for a few minutes during the first period of life may have severe consequences or even result in death. This happens in one to six infants per 1000 live term births. Therefore, there is a high need for a method which can enable bedside brain monitoring to identify those neonates at risk and be able to start the treatment in time. The most important currently available technology to continuously monitor brain function is electroEncephaloGraphy (or EEG). Unfortunately, visual EEG analysis requires particular skills which are not always present round the clock in the Neonatal Intensive Care Unit (NICU). Even if those skills are available it is laborsome to manually analyse many hours of EEG. The lack of time and skill are the main reasons why EEG is ...

Deburchgraeve, Wouter — KU Leuven


Analysis of electrophysiological measurements during stress monitoring

Work-related musculoskeletal disorders are a growing problem in todays society. These musculoskeletal disorders are caused by, amongst others, repetitive movements and mental stress. Stress is defined as the mismatch between a perceived demand and the perceived capacities to meet this demand. Although stress has a subjective origin, several physiological manifestations (e.g. cardiovascular and muscular) occur during periods of perceived stress. New insight and algorithms to extract information, related to stress are beneficial. Therefore, two series of stress experiments are executed in a laboratory environment, where subjects underwent different tasks inducing physical strain, mental stress and a combination of both. In this manuscript, new and modified algorithms for electromyography signals are presented that improve the individual analysis of electromyography signals. A first algorithm removes the interference of the electrical activity of the heart on singlechannel electromyography measurements. This interference signal is ...

Taelman, Joachim — KU Leuven


EEG-Biofeedback and Epilepsy: Concept, Methodology and Tools for (Neuro)therapy Planning and Objective Evaluation

Objective diagnosis and therapy evaluation are still challenging tasks for many neurological disorders. This is highly related to the diversity of cases and the variety of treatment modalities available. Especially in the case of epilepsy, which is a complex disorder not well-explained at the biochemical and physiological levels, there is the need for investigations for novel features, which can be extracted and quantified from electrophysiological signals in clinical practice. Neurotherapy is a complementary treatment applied in various disorders of the central nervous system, including epilepsy. The method is subsumed under behavioral medicine and is considered an operant conditioning in psychological terms. Although the application areas of this promising unconventional approach are rapidly increasing, the method is strongly debated, since the neurophysiological underpinnings of the process are not yet well understood. Therefore, verification of the efficacy of the treatment is one ...

Kirlangic, Mehmet Eylem — Technische Universitaet Ilmenau


Dynamics of Brain Function in Preterm-Born Young Adolescents

Preterm birth is a major risk factor for neurodevelopment impairments often only appearing later in life. The brain is still at a high rate of development during adolescence, making this a promising window for intervention. It is thus crucial to understand the mechanisms of altered brain function in this population. The aim of this thesis is to investigate how the brain dynamically reconfigures its own organisation over time in preterm-born young adolescents. Research to date has mainly focused on structural disturbances or in static features of brain function in this population. However, recent studies have shown that brain activity is highly dynamic, both spontaneously and during performance of a task, and that small disruptions in its complex architecture may interfere with normal behaviour and cognitive abilities. This thesis explores the dynamic nature of brain function in preterm-born adolescents in three ...

Freitas, Lorena G. A. — École Polytechnique Fédérale de Lausanne


Dynamic organization of human brain function and its relevance for psychosis vulnerability

The brain is the substrate of a complex dynamic system providing a remarkably varied range of functionalities, going from simple perception to higher-level cognition. Disturbances in its complex dynamics can cause an equally vast variety of mental disorders. One such brain disorder is schizophrenia, a neurodevelopmental disease characterized by abnormal perception of reality that manifests in symptoms like hallucinations or delusions. Even though the brain is known to be affected in schizophrenia, the exact pathophysiology underlying its developmental course is still mostly unknown. In this thesis, we develop and apply methods to look into ongoing brain function measured through magnetic resonance imaging (MRI) and evaluate the potential of these approaches for improving our understanding of psychosis vulnerability and schizophrenia. We focus on patients with chromosome 22q11.2 deletion syndrome (22q11DS), a genetic disorder that comes with a 30fold increased risk for ...

Zöller, Daniela — EPFL (École Polytechnique Fédérale de Lausanne)


Signal processing for monitoring cerebral hemodynamics in neonates

Disturbances in cerebral hemodynamics are one of the principal causes of cerebral damage in premature infants. Specifically, changes in cerebral blood flow might cause ischemia or hemorrhage that can lead to motor and developmental disabilities. Under normal circumstances, there are several mechanisms that act jointly to preserve cerebral hemodynamics homeostasis. However, in case that one of these mechanisms is disrupted the brain is exposed to damage. Premature infants are susceptible to variations in cerebral circulation due to their fragility. Therefore, monitoring cerebral hemodynamics is of vital importance in order to prevent brain damage in this population and avoid subsequent sequelae. This thesis is oriented to the development of signal processing techniques that can be of help in monitoring cerebral hemodynamics in neonates. There are several problems that hinder the use in clinical practice of monitoring cerebral hemodynamics. On one hand, ...

Caicedo Dorado, Alexander — KU Leuven


Miniaturization effects and node placement for neural decoding in EEG sensor networks

Electroencephalography (EEG) is a non-invasive neurorecording technique, which has the potential to be used for 24/7 neuromonitoring in daily life, e.g., in the context of neural prostheses, brain-computer interfaces, or for improved diagnosis of brain disorders. Although existing mobile wireless EEG headsets are a useful tool for short-term experiments, they are still too heavy, bulky and obtrusive, for long-term EEG-monitoring in daily life. However, we are now witnessing a wave of new miniature EEG sensor devices containing small electrodes embedded in them, which we refer to as Mini-EEGs. Mini-EEGs ideally consist of a wireless node with a small scalp area footprint, in which the electrodes, amplifier and wireless radio are embedded. However, due to their miniaturization, these mini-EEGs have the drawback that only a few EEG channels can be recorded within a small area. The latter also implies that the ...

Mundanad Narayanan, Abhijith — KU Leuven


DETERMINING THE DEPTH OF ANESTHESIA BY THE ANALYSIS OF EEG SIGNALS

In this thesis, it was aimed to propose a new parameter for estimation of depth of anaesthesia by using 15 channel EEG. The recordings were taken from 30 subjects undergoing general anaesthesia for gynecological surgery. The offline processing was realized in MATLAB. First part of the thesis involved literature search of analysis methods that are currently used in current commercial depth of anaethesia monitors and simulations were done. As a result of spectral analysis of EEG channels, the application of connectivity was proposed between channels that were also shown to be active under anaesthesia. By using Multivariate Autoregressive Modeling and Timevarying Partial Directed Coherence values were extracted and the evolution of connectivity changes during deepening stage of anaesthesia was revealed in all patients.

Gurkan, Guray — Istanbul University


Multimodal epileptic seizure detection : towards a wearable solution

Epilepsy is one of the most common neurological disorders, which affects almost 1% of the population worldwide. Anti-epileptic drugs provide adequate treatment for about 70% of epilepsy patients. The remaining 30% of the patients continue to have seizures, which drastically affects their quality of life. In order to obtain efficacy measures of therapeutic interventions for these patients, an objective way to count and document seizures is needed. However, in an outpatient setting, one of the major problems is that seizure diaries kept by patients are unreliable. Automated seizure detection systems could help to objectively quantify seizures. Those detection systems are typically based on full scalp Electroencephalography (EEG). In an outpatient setting, full scalp EEG is of limited use because patients will not tolerate wearing a full EEG cap for long time periods during daily life. There is a need for ...

Vandecasteele, Kaat — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.