Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


A multimicrophone approach to speech processing in a smart-room environment

Recent advances in computer technology and speech and language processing have made possible that some new ways of person-machine communication and computer assistance to human activities start to appear feasible. Concretely, the interest on the development of new challenging applications in indoor environments equipped with multiple multimodal sensors, also known as smart-rooms, has considerably grown. In general, it is well-known that the quality of speech signals captured by microphones that can be located several meters away from the speakers is severely distorted by acoustic noise and room reverberation. In the context of the development of hands-free speech applications in smart-room environments, the use of obtrusive sensors like close-talking microphones is usually not allowed, and consequently, speech technologies must operate on the basis of distant-talking recordings. In such conditions, speech technologies that usually perform reasonably well in free of noise and ...

Abad, Alberto — Universitat Politecnica de Catalunya


Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement

In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...

Jarrett, Daniel P. — Imperial College London


Deep Learning for Distant Speech Recognition

Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. ...

Ravanelli, Mirco — Fondazione Bruno Kessler


Sparse Multi-Channel Linear Prediction for Blind Speech Dereverberation

In many speech communication applications, such as hands-free telephony and hearing aids, the microphones are located at a distance from the speaker. Therefore, in addition to the desired speech signal, the microphone signals typically contain undesired reverberation and noise, caused by acoustic reflections and undesired sound sources. Since these disturbances tend to degrade the quality of speech communication, decrease speech intelligibility and negatively affect speech recognition, efficient dereverberation and denoising methods are required. This thesis deals with blind dereverberation methods, not requiring any knowledge about the room impulse responses between the speaker and the microphones. More specifically, we propose a general framework for blind speech dereverberation based on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech signal in the time-frequency domain.

Jukić, Ante — University of Oldenburg


Artificial Bandwidth Extension of Telephone Speech Signals Using Phonetic A Priori Knowledge

The narrowband frequency range of telephone speech signals originally caused by former analog transmission techniques still leads to frequent acoustical limitations in today’s digital telephony systems. It provokes muffled sounding phone calls with reduced speech intelligibility and quality. By means of artificial speech bandwidth extension approaches, missing frequency components can be estimated and reconstructed. However, the artificially extended speech bandwidth typically suffers from annoying artifacts. Particularly susceptible to this are the fricatives /s/ and /z/. They can hardly be estimated based on the narrowband spectrum and are therefore easily confusable with other phonemes as well as speech pauses. This work takes advantage of phonetic a priori knowledge to optimize the performance of artificial bandwidth extension. Both the offline training part conducted in advance and the main processing part performed later on shall be thereby provided with important phoneme information. As ...

Bauer, Patrick Marcel — Institute for Communications Technology, Technical University Braunschweig


A Multimodal Approach to Audiovisual Text-to-Speech Synthesis

Speech, consisting of an auditory and a visual signal, has always been the most important means of communication between humans. It is well known that an optimal conveyance of the message requires that both the auditory and the visual speech signal can be perceived by the receiver. Nowadays people interact countless times with computer systems in every-day situations. Since the ultimate goal is to make this interaction feel completely natural and familiar, the most optimal way to interact with a computer system is by means of speech. Similar to the speech communication between humans, the most appropriate human-machine interaction consists of audiovisual speech signals. In order to allow the computer system to transfer a spoken message towards its users, an audiovisual speech synthesizer is needed to generate novel audiovisual speech signals based on a given text. This dissertation focuses on ...

Mattheyses, Wesley — Vrije Universiteit Brussel


Automatic Speaker Characterization; Identification of Gender, Age, Language and Accent from Speech Signals

Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...

Bahari, Mohamad Hasan — KU Leuven


Feedback Delay Networks in Artificial Reverberation and Reverberation Enhancement

In today's audio production and reproduction as well as in music performance practices it has become common practice to alter reverberation artificially through electronics or electro-acoustics. For music productions, radio plays, and movie soundtracks, the sound is often captured in small studio spaces with little to no reverberation to save real estate and to ensure a controlled environment such that the artistically intended spatial impression can be added during post-production. Spatial sound reproduction systems require flexible adjustment of artificial reverberation to the diffuse sound portion to help the reconstruction of the spatial impression. Many modern performance spaces are multi-purpose, and the reverberation needs to be adjustable to the desired performance style. Employing electro-acoustic feedback, also known as Reverberation Enhancement Systems (RESs), it is possible to extend the physical to the desired reverberation. These examples demonstrate a wide range of applications ...

Schlecht, Sebastian Jiro — Friedrich-Alexander-Universität Erlangen-Nürnberg


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Dereverberation and noise reduction techniques based on acoustic multi-channel equalization

In many hands-free speech communication applications such as teleconferencing or voice-controlled applications, the recorded microphone signals do not only contain the desired speech signal, but also attenuated and delayed copies of the desired speech signal due to reverberation as well as additive background noise. Reverberation and background noise cause a signal degradation which can impair speech intelligibility and decrease the performance for many signal processing techniques. Acoustic multi-channel equalization techniques, which aim at inverting or reshaping the measured or estimated room impulse responses between the speech source and the microphone array, comprise an attractive approach to speech dereverberation since in theory perfect dereverberation can be achieved. However in practice, such techniques suffer from several drawbacks, such as uncontrolled perceptual effects, sensitivity to perturbations in the measured or estimated room impulse responses, and background noise amplification. The aim of this thesis ...

Kodrasi, Ina — University of Oldenburg


Informed spatial filters for speech enhancement

In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...

Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg


Inferring Room Geometries

Determining the geometry of an acoustic enclosure using microphone arrays has become an active area of research. Knowledge gained about the acoustic environment, such as the location of reflectors, can be advantageous for applications such as sound source localization, dereverberation and adaptive echo cancellation by assisting in tracking environment changes and helping the initialization of such algorithms. A methodology to blindly infer the geometry of an acoustic enclosure by estimating the location of reflective surfaces based on acoustic measurements using an arbitrary array geometry is developed and analyzed. The starting point of this work considers a geometric constraint, valid both in two and three-dimensions, that converts time-of-arrival and time-difference-of-arrival information into elliptical constraints about the location of reflectors. Multiple constraints are combined to yield the line or plane parameters of the reflectors by minimizing a specific cost function in the ...

Filos, Jason — Imperial College London


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.