Large-Scale Light Field Capture and Reconstruction

This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. ...

Gao, Yuan — Department of Computer Science, Kiel University


Forensic Evaluation of the Evidence Using Automatic Speaker Recognition Systems

This Thesis is focused on the use of automatic speaker recognition systems for forensic identification, in what is called forensic automatic speaker recognition. More generally, forensic identification aims at individualization, defined as the certainty of distinguishing an object or person from any other in a given population. This objective is followed by the analysis of the forensic evidence, understood as the comparison between two samples of material, such as glass, blood, speech, etc. An automatic speaker recognition system can be used in order to perform such comparison between some recovered speech material of questioned origin (e.g., an incriminating wire-tapping) and some control speech material coming from a suspect (e.g., recordings acquired in police facilities). However, the evaluation of such evidence is not a trivial issue at all. In fact, the debate about the presentation of forensic evidence in a court ...

Ramos, Daniel — Universidad Autonoma de Madrid


Linear Dynamical Systems with Sparsity Constraints: Theory and Algorithms

This thesis develops new mathematical theory and presents novel recovery algorithms for discrete linear dynamical systems (LDS) with sparsity constraints on either control inputs or initial state. The recovery problems in this framework manifest as the problem of reconstructing one or more sparse signals from a set of noisy underdetermined linear measurements. The goal of our work is to design algorithms for sparse signal recovery which can exploit the underlying structure in the measurement matrix and the unknown sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery. We answer three fundamental and interconnected questions on sparse signal recovery problems that arise in the context of LDS. First, what are necessary and sufficient conditions for the existence of a sparse solution? Second, given that a sparse solution exists, what are good low-complexity algorithms that ...

Joseph, Geethu — Indian Institute of Science, Bangalore


Subspace-based quantification of magnetic resonance spectroscopy data using biochemical prior knowledge

Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...

Laudadio, Teresa — Katholieke Universiteit Leuven


Improvements in Pose Invariance and Local Description for Gabor-based 2D Face Recognition

Automatic face recognition has attracted a lot of attention not only because of the large number of practical applications where human identification is needed but also due to the technical challenges involved in this problem: large variability in facial appearance, non-linearity of face manifolds and high dimensionality are some the most critical handicaps. In order to deal with the above mentioned challenges, there are two possible strategies: the first is to construct a “good” feature space in which the manifolds become simpler (more linear and more convex). This scheme usually comprises two levels of processing: (1) normalize images geometrically and photometrically and (2) extract features that are stable with respect to these variations (such as those based on Gabor filters). The second strategy is to use classification structures that are able to deal with non-linearities and to generalize properly. To ...

Gonzalez-Jimenez, Daniel — University of Vigo


Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques

Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...

Trimeche, Mejdi — Tampere University of Technology


Advances in Detection and Classification for Through-the-Wall Radar Imaging

In this PhD thesis the problem of detection and classification of stationary targets in Through-the-Wall Radar Imaging is considered. A multiple-view framework is used in which a 3D scene of interest is imaged from a set of vantage points. By doing so, clutter and noise is strongly suppressed and target detectability increased. In target detection, centralized as well as decentralized frameworks for simultaneous image fusion and detection are examined. The practical case when no prior knowledge on image statistics is available and all inference must be drawn from the data at hand is specifically considered. An adaptive detection scheme is proposed which iteratively adapts in a non-stationary environment. Optimal configurations for this scheme are derived based on morphological operations which allow for automatic and reliable target detection. In a decentralized framework, local decisions are transmitted to a fusion center to ...

Debes, Christian — Technical University of Darmstad


Estimation for Sensor Fusion and Sparse Signal Processing

Progressive developments in computing and sensor technologies during the past decades have enabled the formulation of increasingly advanced problems in statistical inference and signal processing. The thesis is concerned with statistical estimation methods, and is divided into three parts with focus on two different areas: sensor fusion and sparse signal processing. The first part introduces the well-established Bayesian, Fisherian and least-squares estimation frameworks, and derives new estimators. Specifically, the Bayesian framework is applied in two different classes of estimation problems: scenarios in which (i) the signal covariances themselves are subject to uncertainties, and (ii) distance bounds are used as side information. Applications include localization, tracking and channel estimation. The second part is concerned with the extraction of useful information from multiple sensors by exploiting their joint properties. Two sensor configurations are considered here: (i) a monocular camera and an inertial ...

Zachariah, Dave — KTH Royal Institute of Technology


Kernel PCA and Pre-Image Iterations for Speech Enhancement

In this thesis, we present novel methods to enhance speech corrupted by noise. All methods are based on the processing of complex-valued spectral data. First, kernel principal component analysis (PCA) for speech enhancement is proposed. Subsequently, a simplification of kernel PCA, called pre-image iterations (PI), is derived. This method computes enhanced feature vectors iteratively by linear combination of noisy feature vectors. The weighting for the linear combination is found by a kernel function that measures the similarity between the feature vectors. The kernel variance is a key parameter for the degree of de-noising and has to be set according to the signal-to-noise ratio (SNR). Initially, PI were proposed for speech corrupted by additive white Gaussian noise. To be independent of knowledge about the SNR and to generalize to other stationary noise types, PI are extended by automatic determination of the ...

Leitner, Christina — Graz University of Technology


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon


Active and Passive Approaches for Image Authentication

The generation and manipulation of digital images is made simple by widely available digital cameras and image processing software. As a consequence, we can no longer take the authenticity of a digital image for granted. This thesis investigates the problem of protecting the trustworthiness of digital images. Image authentication aims to verify the authenticity of a digital image. General solution of image authentication is based on digital signature or watermarking. A lot of studies have been conducted for image authentication, but thus far there has been no solution that could be robust enough to transmission errors during images transmission over lossy channels. On the other hand, digital image forensics is an emerging topic for passively assessing image authenticity, which works in the absence of any digital watermark or signature. This thesis focuses on how to assess the authenticity images when ...

Ye, Shuiming — National University of Singapore


Generalized Consistent Estimation in Arbitrarily High Dimensional Signal Processing

The theory of statistical signal processing finds a wide variety of applications in the fields of data communications, such as in channel estimation, equalization and symbol detection, and sensor array processing, as in beamforming, and radar systems. Indeed, a large number of these applications can be interpreted in terms of a parametric estimation problem, typically approached by a linear filtering operation acting upon a set of multidimensional observations. Moreover, in many cases, the underlying structure of the observable signals is linear in the parameter to be inferred. This dissertation is devoted to the design and evaluation of statistical signal processing methods under realistic implementation conditions encountered in practice. Traditional statistical signal processing techniques intrinsically provide a good performance under the availability of a particularly high number of observations of fixed dimension. Indeed, the original optimality conditions cannot be theoretically guaranteed ...

Rubio, Francisco — Universitat Politecnica de Catalunya


Advances in unobtrusive monitoring of sleep apnea using machine learning

Obstructive sleep apnea (OSA) is among the most prevalent sleep disorders, which is estimated to affect 6 %−19 % of women and 13 %−33 % of men. Besides daytime sleepiness, impaired cognitive functioning and an increased risk for accidents, OSA may lead to obesity, diabetes and cardiovascular diseases (CVD) on the long term. Its prevalence is only expected to rise, as it is linked to aging and excessive body fat. Nevertheless, many patients remain undiagnosed and untreated due to the cumbersome clinical diagnostic procedures. For this, the patient is required to sleep with an extensive set of body attached sensors. In addition, the recordings only provide a single night perspective on the patient in an uncomfortable, and often unknown, environment. Thus, large scale monitoring at home is desired with comfortable sensors, which can stay in place for several nights. To ...

Huysmans, Dorien — KU Leuven


Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University


Sparse Array Signal Processing

This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...

Huang, Huiping — Darmstadt University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.