Phase Noise and Wideband Transmission in Massive MIMO

In the last decades the world has experienced a massive growth in the demand for wireless services. The recent popularity of hand-held devices with data exchange capabilities over wireless networks, such as smartphones and tablets, increased the wireless data traffic even further. This trend is not expected to cease in the foreseeable future. In fact, it is expected to accelerate as everyday apparatus unrelated with data communications, such as vehicles or household devices, are foreseen to be equipped with wireless communication capabilities. Further, the next generation wireless networks should be designed such that they have increased spectral and energy efficiency, provide uniformly good service to all of the accommodated users and handle many more devices simultaneously. Massive multiple-input multiple-output (Massive MIMO) systems, also termed as large-scale MIMO, very large MIMO or full-dimension MIMO, have recently been proposed as a candidate ...

Pitarokoilis, Antonios — Linköping University


Energy-Efficient Distributed Multicast Beamforming Using Iterative Second-Order Cone Programming

In multi-user (MU) downlink beamforming, a high spectral efficiency along with a low transmit power is achieved by separating multiple users in space rather than in time or frequency using spatially selective transmit beams. For streaming media applications, multi-group multicast (MGM) downlink beamforming is a promising approach to exploit the broadcasting property of the wireless medium to transmit the same information to a group of users. To limit inter-group interference, the individual streams intended for different multicast groups are spatially separated using MGM downlink beamforming. Spatially selective downlink beamforming requires the employment of an array of multiple antennas at the base station (BS). The hardware costs associated with the use of multiple antennas may be prohibitive in practice. A way to avoid the expensive employment of multiple antennas at the BS is to exploit user cooperation in wireless networks where ...

Bornhorst, Nils — Technische Universität Darmstadt


Cooperative and Cognitive Communication Techniques for Wireless Networks

During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...

Tsinos, Christos — University of Patras


Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...

Zhang, Jianshu — Ilmenau University of Technology


Quality of Service Optimization in the Broadcast Channel with Imperfect Transmit Channel State Information

This work considers a Broadcast Channel (BC) system, where the transmitter is equipped with multiple antennas and each user at the receiver side could have one or more antennas. Depending on the number of antennas at the receiver side, such a system is known as Multiple-User Multiple-Input Single-Output (MU-MISO), for single antenna users, or Multiple-UserMultiple-InputMultiple-Output (MU-MIMO), for several antenna users. This model is suitable for current wireless communication systems. Regarding the direction of the data flow, we differentiate between downlink channel or BC, and uplink channel or Multiple Access Channel (MAC). In the BC the signals are sent from the Base Station (BS) to the users, whereas the information from the users is sent to the BS in the MAC. In this work we focus on the BC where the BS applies linear precoding taking advantage of multiple antennas. The ...

González-Coma, José Pablo — University of a Coruña


On the Energy Efficiency of Cooperative Wireless Networks

The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...

Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid


Coordination Strategies for Interference Management in MIMO Dense Cellular Networks

The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...

Lagen, Sandra — Universitat Politecnica de Catalunya


Precoding and Relaying Algorithms for Multiuser MIMO Downlink Channels

In the last years, research has focused on multiple-input multiple-output (MIMO) wireless technology due to the capacity and performance improvement it provides, offering a higher spectral efficiency. In addition, when multiple users take part in the network, the scenario becomes much more complex, since resources like bandwidth, time or transmission power must be shared. Furthermore, the performance of the system is degraded as a consequence of the noise and multiuser interference (MUI). When the transmission is conducted from a base station (BS) to multiple users, a pre-equalization stage called precoding is applied. By means of this, each user will be able to interpret the signal independently, without the knowledge of the channel. Precoding techniques are classified into linear and non-linear. In fact, the non-linear Tomlinson-Harashima precoding (THP) and vector precoding (VP) techniques have been shown to achieve very good results ...

Jimenez, Idoia — University of Mondragon


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Transmission Strategies for Interfering Networks with Finite Rate and Outdated Channel Feedback

The emergence of very capable mobile terminals, e.g. smartphones or tablets, has dramatically increased the demand of wireless data traffic in recent years. Current growth forecasts elucidate that wireless communication standards will not be able to afford future traffic demands, thus many research efforts have been oriented towards increasing the efficiency of wireless networks. Wireless communications introduce many issues not present in wired systems, e.g. multipath effects or interference. Some of these issues may be tackled by the use of multiple antennas, i.e. MIMO technologies. This solution allows increasing not only the reliability and robustness of the communications, i.e. the diversity gain, but also its efficiency, i.e. the multiplexing gain or degrees of freedom (DoF). The DoF describe the slope of channel capacity at very high signal-to-noise-ratio (SNR) regime. For a point-to-point (P2P) communication, assuming that the wireless channel response ...

Torrellas, Marc — Universitat Politècnica de Catalunya


Cooperative Techniques for Interference Management in Wireless Networks

In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...

Lameiro, Christian — University of Cantabria


ACHIEVABLE RATES FOR GAUSSIAN CHANNELS WITH MULTIPLE RELAYS

Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter to code across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector and provides large capacity, and reliability, gains. Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay ...

Del Coso, Aitor — CTTC-Centre Tecnològic de Telecomunicacions de Catalunya


Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems

Multiple-input multiple output (MIMO) systems deploy multiple antennas at either end of a communication link and can provide significant benefits compared to traditional single antenna systems, such as increased data rates through spatial multiplexing gain, and/or improved link reliability through diversity techniques. Recently, the natural extension of utilising multiple antennas in relay networks, known as MIMO relaying, has attracted significant research attention due to the fact that the benefits of MIMO can be coupled with extended network coverage through the use of relaying devices. This thesis concentrates on the design and analysis of different aspects of MIMO relay systems communicating over frequency selective channels with the use of orthogonal frequency division multiplexing (OFDM). The first focus of this thesis is on the development of training based channel estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of channel ...

Millar, Andrew Paul — University of Strathclyde


Random matrix theory for advanced communication systems

Advanced mobile communication systems are characterized by a dense deployment of different types of wireless access points. Since these systems are primarily limited by interference, multiple-input multiple-output (MIMO) techniques as well as coordinated transmission and detection schemes are necessary to mitigate this limitation. Thus, mobile communication systems become more complex which requires that also the mathematical tools for their theoretical analysis must evolve. These must be able to take the most important system characteristics into account, such as fading, path loss, and interference. The aim of this thesis is to develop such tools based on large random matrix theory and to demonstrate their usefulness with the help of several practical applications, such as the performance analysis of network MIMO and large-scale MIMO systems, the design of low-complexity polynomial expansion detectors, and the study of random beamforming techniques as well as ...

Hoydis, Jakob — Supélec, France


Design and Analysis of Duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links

Relaying, i.e., multihop communication via so-called relay nodes, has emerged as an advanced technology for economically realizing long transmission ranges and high data rates in wireless systems. The focus of this thesis is on multihop multiuser systems where signals are modulated with orthogonal frequency-division multiplexing or multiple access, i.e., OFDM(A), and relays are infrastructure-based network nodes. In general, the thesis contributes by investigating how to operate relay links optimally under spectrum, transmit power and processing capability limitations, as well as how to improve signal processing in relays by exploiting other advanced concepts such as multiantenna techniques, spectrum reuse, transmit power adaptation, and new options for multicarrier protocol design. The first theme is the design and analysis of duplexing modes which define how a relay link reuses allocated frequency bands in each hop. Especially, the full-duplex relaying mode is promoted as ...

Riihonen, Taneli — Aalto University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.