Joint Downlink Beamforming and Discrete Resource Allocation Using Mixed-Integer Programming

Multi-antenna processing is widely adopted as one of the key enabling technologies for current and future cellular networks. Particularly, multiuser downlink beamforming (also known as space-division multiple access), in which multiple users are simultaneously served with spatial transmit beams in the same time and frequency resource, achieves high spectral efficiency with reduced energy consumption. To harvest the potential of multiuser downlink beamforming in practical systems, optimal beamformer design shall be carried out jointly with network resource allocation. Due to the specifications of cellular standards and/or implementation constraints, resource allocation in practice naturally necessitates discrete decision makings, e.g., base station (BS) association, user scheduling and admission control, adaptive modulation and coding, and codebook-based beamforming (precoding). This dissertation focuses on the joint optimization of multiuser downlink beamforming and discrete resource allocation in modern cellular networks. The problems studied in this thesis involve ...

Cheng, Yong — Technische Universität Darmstadt


Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...

Kiayani, Adnan — Tampere University of Technology


Distributed Demand-Side Optimization in the Smart Grid

The modern power grid is facing major challenges in the transition to a low-carbon energy sector. The growing energy demand and environmental concerns require carefully revisiting how electricity is generated, transmitted, and consumed, with an eye to the integration of renewable energy sources. The envisioned smart grid is expected to address such issues by introducing advanced information, control, and communication technologies into the energy infrastructure. In this context, demand-side management (DSM) makes the end users responsible for improving the efficiency, reliability and sustainability of the power system: this opens up unprecedented possibilities for optimizing the energy usage and cost at different levels of the network. The design of DSM techniques has been extensively discussed in the literature in the last decade, although the performance of these methods has been scarcely investigated from the analytical point of view. In this thesis, ...

Atzeni, Italo — Universitat Politècnica de Catalunya


Discrete Quadratic Time-Frequency Distributions: Definition, Computation, and a Newborn Electroencephalogram Application

Most signal processing methods were developed for continuous signals. Digital devices, such as the computer, process only discrete signals. This dissertation proposes new techniques to accurately define and efficiently implement an important signal processing method---the time--frequency distribution (TFD)---using discrete signals. The TFD represents a signal in the joint time--frequency domain. Because these distributions are a function of both time and frequency they, unlike traditional signal processing methods, can display frequency content that changes over time. TFDs have been used successfully in many signal processing applications as almost all real-world signals have time-varying frequency content. Although TFDs are well defined for continuous signals, defining and computing a TFD for discrete signals is problematic. This work overcomes these problems by making contributions to the definition, computation, and application of discrete TFDs. The first contribution is a new discrete definition of TFDs. A ...

O' Toole, John M. — University of Queensland


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Resource management and optimization in multi-user DSL systems

Digital subscriber line (DSL) technology is currently the most widely deployed broadband internet access technology and will continue to play an important role during the next decade. However, one of the major sources that limits the performance of current DSL systems is crosstalk, which is a channel distortion that is caused by the electromagnetic coupling among the different copper wires (DSL connections). Multi-user resource management is a very promising approach to prevent or even remove the impact of crosstalk, and that can significantly increase the performance of DSL systems. In this thesis, multiple efficient algorithms are proposed for multi-user resource management that only require a very low computational complexity and that can be applied to large-scale DSL systems. The application of these algorithms allows to significantly increase the data rates of DSL systems. It is furthermore shown that the proposed ...

Tsiaflakis, Paschalis — Katholieke Universiteit Leuven


Learning Transferable Knowledge through Embedding Spaces

The unprecedented processing demand, posed by the explosion of big data, challenges researchers to design efficient and adaptive machine learning algorithms that do not require persistent retraining and avoid learning redundant information. Inspired from learning techniques of intelligent biological agents, identifying transferable knowledge across learning problems has been a significant research focus to improve machine learning algorithms. In this thesis, we address the challenges of knowledge transfer through embedding spaces that capture and store hierarchical knowledge. In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first address zero-shot image classification, where the goal is to identify images from unseen classes using semantic descriptions of these classes. We train two coupled dictionaries which align visual and semantic domains via an intermediate embedding space. We then extend this idea by training deep networks that ...

Mohammad Rostami — University of Pennsylvania


Energy-Efficient Distributed Multicast Beamforming Using Iterative Second-Order Cone Programming

In multi-user (MU) downlink beamforming, a high spectral efficiency along with a low transmit power is achieved by separating multiple users in space rather than in time or frequency using spatially selective transmit beams. For streaming media applications, multi-group multicast (MGM) downlink beamforming is a promising approach to exploit the broadcasting property of the wireless medium to transmit the same information to a group of users. To limit inter-group interference, the individual streams intended for different multicast groups are spatially separated using MGM downlink beamforming. Spatially selective downlink beamforming requires the employment of an array of multiple antennas at the base station (BS). The hardware costs associated with the use of multiple antennas may be prohibitive in practice. A way to avoid the expensive employment of multiple antennas at the BS is to exploit user cooperation in wireless networks where ...

Bornhorst, Nils — Technische Universität Darmstadt


Audio-visual processing and content management techniques, for the study of (human) bioacoustics phenomena

The present doctoral thesis aims towards the development of new long-term, multi-channel, audio-visual processing techniques for the analysis of bioacoustics phenomena. The effort is focused on the study of the physiology of the gastrointestinal system, aiming at the support of medical research for the discovery of gastrointestinal motility patterns and the diagnosis of functional disorders. The term "processing" in this case is quite broad, incorporating the procedures of signal processing, content description, manipulation and analysis, that are applied to all the recorded bioacoustics signals, the auxiliary audio-visual surveillance information (for the monitoring of experiments and the subjects' status), and the extracted audio-video sequences describing the abdominal sound-field alterations. The thesis outline is as follows. The main objective of the thesis, which is the technological support of medical research, is presented in the first chapter. A quick problem definition is initially ...

Dimoulas, Charalampos — Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece


Signal Quantization and Approximation Algorithms for Federated Learning

Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...

A, Vijay — Indian Institute of Technology Bombay


Design and Analysis of Medium Access Control Protocols for Ad hoc and Cooperative Wireless Networks

This thesis aims at contributing to the incessant evolution of wireless communications. The focus is on the design of medium access control (MAC) protocols for ad hoc and cooperative wireless networks. A comprehensive state of the art and a background on the topic is provided in a first preliminary part of this dissertation. The motivations and key objectives of the thesis are also presented in this part. Then, the contributions of the thesis are divided into two fundamental parts. The first part of the thesis is devoted to the design, analysis, and performance evaluation of a new high-performance MAC protocol. It is the Distributed Queueing MAC Protocol for Ad hoc Networks (DQMAN) and constitutes an extension and adaptation of the near-optimum Distributed Queueing with Collision Avoidance (DQCA) protocol, designed for infrastructure-based networks, to operate over networks without infrastructure. DQMAN introduces ...

Alonso-Zarate, Jesus — Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)


Deep Learning Techniques for Visual Counting

The explosion of Deep Learning (DL) added a boost to the already rapidly developing field of Computer Vision to such a point that vision-based tasks are now parts of our everyday lives. Applications such as image classification, photo stylization, or face recognition are nowadays pervasive, as evidenced by the advent of modern systems trivially integrated into mobile applications. In this thesis, we investigated and enhanced the visual counting task, which automatically estimates the number of objects in still images or video frames. Recently, due to the growing interest in it, several Convolutional Neural Network (CNN)-based solutions have been suggested by the scientific community. These artificial neural networks, inspired by the organization of the animal visual cortex, provide a way to automatically learn effective representations from raw visual data and can be successfully employed to address typical challenges characterizing this task, ...

Ciampi Luca — University of Pisa


Understanding and Assessing Quality of Experience in Immersive Communications

eXtended Reality (XR) technology, also called Mixed Reality (MR), is in constant development and improvement in terms of hardware and software to offer relevant experiences to users. One of the advances in XR has been the introduction of real visual information in the virtual environment, offering a more natural interaction with the scene and a greater acceptance of technology. Another advance has been achieved with the representation of the scene through a video that covers the entire environment, called 360-degree or omnidirectional video. These videos are acquired by cameras with omnidirectional lenses that cover the 360-degrees of the scene and are generally viewed by users through a head-tracked Head Mounted Display (HMD). Users only visualize a subset of the 360-degree scene, called viewport, which changes with the variations of the viewing direction of the users, determined by the movements of ...

Orduna, Marta — Universidad Politécnica de Madrid


Fairness Analysis of Wireless Beamforming Schedulers

This dissertation is devoted to the analysis of fairness at the physical layer in multi-antenna multi-user communications, which implies a new view on traditional techniques. However, the degree of equality/inequality of any resource distribution has been extensively studied in other fields such as Economics or Social Sciences. Indeed, engineers usually aim at optimizing the total performance, but when multiple users come into play, the overall optimization might not necessarily be the best thing to do. For instance in wireless systems, the user with a bad channel condition might suffer the consequences from the selective choice based on the instantaneous channel quality made by a centralized entity. In this sense, the problem has four different perspectives: antenna processing, power allocation, bit allocation, and combination of space diversity (SDMA) with multiple subcarriers (OFDM). The technical contribution of the author starts with the ...

Bartolomé Calvo, Diego — CTTC-Centre Tecnològic de Telecomunicacions de Catalunya


Heuristic Optimization Methods for System Partitioning in HW/SW Co-Design

Nowadays, the design of embedded systems is confronted with the combination of complex signal processing algorithms on the one hand and a variety of computational intensive multimedia applications on the other hand, while time to product launch has been extremely reduced. Especially in the wireless domain those challenges are stacked with tough requirements on power consumption and chip size. Unfortunately, design productivity did not undergo a similar progression and therefore fails to cope with the heterogeneity of modern hardware architectures. Until now, electronic design automation do not provide for complete coverage of the design ow. In particular crucial design tasks as high level characterisation of algorithms, oating-point to xed-point conversion, automated hardware/software partitioning, and automated virtual prototyping are not suciently supported or completely absent. In recent years a consistent design framework named Open Tool Integration Environment (OTIE) has been established ...

Knerr, Bastian — Vienna University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.