Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


Optimized Merging of Search-Coil and Fluxgate Data for the Magnetospheric Multiscale Mission

he main objective of the Magnetospheric Multiscale (MMS) mission is to characterize fine-scale structures in the Earth’s magnetotail and magnetopause. These dynamic structures traverse the MMS spacecraft formation at high speed and generate magnetic field signatures that cross the sensitive frequency bands of both search-coil and fluxgate magnetometers. An improved understanding of these events is only possible by combining data from both instrument types for magnetospheric event analysis. This combination is done using a model-based sensor fusion approach that merges data from both instrument types to a virtual instrument with flat gain curve, linear phase and known timing properties as well as the highest sensitivity and lowest noise floor. The generation of the underlying instrument models requires precise knowledge of the instrument frequency responses and timing. This knowledge was obtained in a dedicated end-to-end measurement campaign using a purpose-built magnetic ...

Fischer, David — Signal Processing and Speech Communication Laboratory, TU Graz; Space Research Institute Graz, Austrian Academy of Sciences


Synchronization and Multipath Delay Estimation Algorithms for Digital Receivers

This thesis considers the development of synchronization and signal processing techniques for digital communication receivers, which is greatly influenced by the digital revolution of electronic systems. Eventhough synchronization concepts are well studied and established in the literature, there is always a need for new algorithms depending on new system requirements and new trends in receiver architecture design. The new trend of using digital receivers where the sampling of the baseband signal is performed by a free running oscillator reduces the analog components by performing most of the functions digitally, which increases the flexibility, configurability, and integrability of the receiver. Also, this new design approach contributes greatly to the software radio (SWR) concept which is the natural progression of digital radio receivers towards multimode, multistandard terminals where the radio functionalities are defined by software. The first part of this research work ...

Hamila, Ridha — Tampere University of Technology


Signal Processing in Phase-Domain All-Digital Phase-Locked Loops

The implementation of wireless transceivers on a single chip in a single technology requires digital realizations of traditional analog building blocks such as phase-locked loops (PLLs). All-digital PLLs (ADPLLs) utilize the zero crossings of signals instead of their amplitudes to realize the frequency synthesizer entirely in digital CMOS technology. This thesis analyzes ADPLLs and highlights the system-level signal processing aspects. A z-domain model and a mixed-signal model are used to develop signal processing algorithms, to perform high-level simulations, and to evaluate the performance of ADPLLs. The impact of imperfections on the output phase noise spectrum are analytically described and compared to event-driven simulation outcomes. Oscillator noise, frequency quantization noise with sigma-delta noise shaping, and reference clock jitter raise the output phase noise level, whereas phase quantization and injection pulling manifest themselves as spurs in the output phase noise spectrum. Furthermore, ...

Stefan Mendel — Graz University of Technology


Digital Pre-distortion of Microwave Power Amplifiers

With the advent of spectrally efficient wireless communication systems employing modulation schemes with varying amplitude of the communication signal, linearisation techniques for nonlinear microwave power amplifiers have gained significant interest. The availability of fast and cheap digital processing technology makes digital pre-distortion an attractive candidate as a means for power amplifier linearisation since it promises high power efficiency and fleexibility. Digital pre-distortion is further in line with the current efforts towards software defined radio systems, where a principal aim is to substitute costly and inflexible analogue circuitry with cheap and reprogrammable digital circuitry. Microwave power amplifiers are most efficient in terms of delivered microwave output power vs. supplied power if driven near the saturation point. In this operational mode, the amplifier behaves as a nonlinear device, which introduces undesired distortions in the information bear- ing microwave signal. These nonlinear distortions ...

Aschbacher, E. — Vienna University of Technology


Advanced Tracking Loop Architectures for Multi-frequency GNSS Receiver

The multi-frequency Global Navigation Satellite System (GNSS) signals are designed to overcome the inherent performance limitations of single-frequency receivers. However, the processing of multiple frequency signals in a time-varying GNSS signal environment which are potentially affected by multipath, ionosphere scintillation, blockage, and interference is quite challenging, as each signal is influenced differently by channel effects according to its Radio Frequency (RF). In order to get the benefit of synchronously/coherently generated multiple frequency signals, advanced receiver signal processing techniques need to be developed. The aim of this research thesis is to extract the best performance benefits out of multifrequency GNSS signals in a time-varying GNSS signal environment. To accomplish this objective, it is necessary to analyze the multi-frequency signal characteristics and to investigate suitable signal processing algorithms in order to enable the best performance of each signal. The GNSS receiver position ...

Bolla, Padma — Tampere University of Technology, Finland and Samara University, Russia


Measurement-based Performance Evaluation of WiMAX and HSDPA

In this work, a realistic physical layer performance evaluation of High Speed Downlink Packet Access (HSDPA) as well as IEEE 802.16-2004, commonly referred to as Worldwide Inter-operability for Microwave Access (WiMAX), is provided. The performance evaluation is carried out in two measurement campaigns that took place in an alpine and an urban environment. Both, WiMAX and HSDPA use adaptive modulation and coding to adapt the channel coding rate and the size of the symbol alphabet to the current channel conditions. Additionally, both systems allow for multiple transmit and multiple receive antennas to increase the spectral efficiency and the reliability of the transmission. While WiMAX utilizes multiple transmit antennas by simple Alamouti space-time coding, HSDPA implements a closed-loop system with channel adaptive spatial precoding. The necessary, quantized channel information is fed back from the user equipment to the base station. The ...

Mehlfuehrer, Christian — Vienna University of Technology


Analysis of Multipath Mitigation Techniques for Satellite-based Positioning Applications

Multipath remains a dominant source of ranging errors in any Global Navigation Satellite System (GNSS), such as the Global Positioning System (GPS) or the developing European satellite navigation system Galileo. Multipath is undesirable in the context of GNSS, since the reception of multipath can create significant distortion to the shape of the correlation function used in the time delay estimate of a Delay Locked Loop (DLL) of a navigation receiver, leading to an error in the receiver's position estimate. Therefore, in order to mitigate the impact of multipath on a navigation receiver, the multipath problem has been approached from several directions, including the development of novel signal processing techniques. Many of these techniques rely on modifying the tracking loop discriminator (i.e., the DLL and its enhanced variants) in order to make it resistant to multipath, but their performance in severe ...

Bhuiyan, Mohammad Zahidul Hasan — Tampere University of Technology


Robust GNSS Carrier Phase-based Position and Attitude Estimation

Navigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: --code pseudorange, which is a measure of the time difference between the signal's emission and reception at the satellite and receiver, respectively, scaled by the speed of light; --carrier phase pseudorange, which measures the beat of the carrier signal and ...

Daniel Medina — German Aerospace Center (DLR)


New Higher-Order Active Contour Models, Shape Priors, and Multiscale Analysis - Their Application To Road Network Extraction From Very High Resolution Satelite Images

The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution statistical data model and a multiresolution constrained prior model. They enable the integration of segmentation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior term balances the effect of the generic prior knowledge carried by ...

Peng, Ting — Project-Team Ariana (INRIA-Sophia Antipolis, France); LIAMA (CASIA, China)


Measurement Methods for Estimating the Error Vector Magnitude in OFDM Transceivers

The error vector magnitude (EVM) is a standard metric to quantify the performance of digital communication systems and related building blocks. Regular EVM measurements require expensive equipment featuring inphase and quadrature (IQ) demodulation, wideband analog-to-digital converters (ADCs), and dedicated receiver algorithms to demodulate the data symbols. With modern high data rate communication standards that require high bandwidths and low amounts of error, it is difficult to avoid bias due to errors in the measurement chain. This thesis develops and discusses measurement methods that address the above-described issues with EVM measurements. The first method is an extension of the regular EVM, yielding two results from a single measurement. One result equals the regular EVM result, whereas the other excludes potential errors due to mismatches of the I- and Q- paths of direct conversion transmitters and receivers (IQ imbalance). This can be ...

Freiberger, Karl — Graz University of Technology


Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning

This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...

Closas, Pau — Universitat Politecnica de Catalunya


Non-Coherent Communication in Multiple-Antenna Systems: Receiver Design, Codebook Construction and Capacity Analysis

The thesis addresses the problem of space-time codebook design for communication in multiple-input multiple-output (MIMO) wireless systems. The realistic and challenging non-coherent setup (channel state information is absent at the receiver) is considered. A generalized likelihood ratio test (GLRT)-like detector is assumed at the receiver and contrary to most existing approaches, an arbitrary correlation structure is allowed for the additive Gaussian observation noise. A theoretical analysis of the probability of error is derived, for both the high and low signal-to-noise ratio (SNR) regimes. This leads to a codebook design criterion which shows that optimal codebooks correspond to optimal packings in a Cartesian product of projective spaces. The actual construction of the codebooks involves solving a high-dimensional, nonlinear, nonsmooth optimization problem which is tackled here in two phases: a convex semi-definite programming (SDP) relaxation furnishes an initial point which is then ...

Beko, Marko — IST, Lisbon


Compression methods for digital holographic data

Digital holography plays a crucial role in recent three dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes, which is the aim of this thesis. Particularly, the objective is the compression of digital holographic data obtained from phase-shifting interferometry. Unlike conventional approaches which encode certain representation of phase-shifting holographic data independently, the proposed work first studies the possible representations of phase-shifting holographic data and analyzes the redundancies in each representation. A new representation, referred to as shifted distance information, is selected as the compression target. Then, a vector lifting schemes based compression method is proposed to jointly encode this data. We also show the benefits that can be drawn from improving ...

Xing, Yafei — Institute Mines-Telecom, Telecom ParisTech


Modeling of Magnetic Fields and Extended Objects for Localization Applications

The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...

Wahlström, Niklas — Linköping University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.