Improving Security and Privacy in Biometric Systems

The achievement of perfect security is out of the question. Even if we are not yet aware of them, every security aimed technology has weaknesses which attackers can exploit in order to circumvent the system. We should hence direct our efforts to the development of applications whose security level make it infeasible for computationally bound attackers to break the systems. This Thesis is focused on improving the security and privacy provided by biometric systems. With the increased need for reliable and automatic identity verification, biometrics have emerged in the last decades as a pushing alternative to traditional authentication methods. Certainly, biometrics are very attractive and useful for the general public: forget about PINs and passwords, you are your own key. However, the wide deployment of biometric recognition systems at both large-scale applications (e.g., border management at European level or national ...

Gomez-Barrero, Marta — Universidad Autonoma de Madrid


Mining the ECG: Algorithms and Applications

This research focuses on the development of algorithms to extract diagnostic information from the ECG signal, which can be used to improve automatic detection systems and home monitoring solutions. In the first part of this work, a generically applicable algorithm for model selection in kernel principal component analysis is presented, which was inspired by the derivation of respiratory information from the ECG signal. This method not only solves a problem in biomedical signal processing, but more importantly offers a solution to a long-standing problem in the field of machine learning. Next, a methodology to quantify the level of contamination in a segment of ECG is proposed. This level is used to detect artifacts, and to improve the performance of different classifiers, by removing these artifacts from the training set. Furthermore, an evaluation of three different methodologies to compute the ECG-derived ...

Varon, Carolina — KU Leuven


Transformation methods in signal processing

This dissertation is concerned with the application of the theory of rational functions in signal processing. The PhD thesis summarizes the corresponding results of the author’s research. Since the systems of rational functions are defined by the collection of inverse poles with multiplicities, the following parameters should be determined: the number, the positions and the multiplicities of the inverse poles. Therefore, we develop the hyperbolic variant of the so-called Nelder–Mead and the particle swarm optimization algorithm. In addition, the latter one is integrated into a more general multi-dimensional framework. Furthermore, we perform a detailed stability and error analysis of these methods. We propose an electrocardiogram signal generator based on spline interpolation. It turns to be an efficient tool for testing and evaluating signal models, filtering techniques, etc. In this thesis, the synthesized heartbeats are used to test the diagnostic distortion ...

Kovács, Péter — Eötvös L. University, Budapest, Hungary


Robust Estimation and Model Order Selection for Signal Processing

In this thesis, advanced robust estimation methodologies for signal processing are developed and analyzed. The developed methodologies solve problems concerning multi-sensor data, robust model selection as well as robustness for dependent data. The work has been applied to solve practical signal processing problems in different areas of biomedical and array signal processing. In particular, for univariate independent data, a robust criterion is presented to select the model order with an application to corneal-height data modeling. The proposed criterion overcomes some limitations of existing robust criteria. For real-world data, it selects the radial model order of the Zernike polynomial of the corneal topography map in accordance with clinical expectations, even if the measurement conditions for the videokeratoscopy, which is the state-of-the-art method to collect corneal-height data, are poor. For multi-sensor data, robust model order selection selection criteria are proposed and applied ...

Muma, Michael — Technische Universität Darmstadt


Privacy Protecting Biometric Authentication Systems

As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing ...

Kholmatov, Alisher — Sabanci University


Spatio-temporal characterization of the surface electrocardiogram for catheter ablation outcome prediction in persistent atrial fibrillation

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia encountered in clinical practice, and one of the main causes of ictus and strokes. Despite the advances in the comprehension of its mechanisms, its thorough characterization and the quantification of its effects on the human heart are still an open issue. In particular, the choice of the most appropriate therapy is frequently a hard task. Radiofrequency catheter ablation (CA) is becoming one of the most popular solutions for the treatment of the disease. Yet, very little is known about its impact on heart substrate during AF, thus leading to an inaccurate selection of positive responders to therapy and a low success rate; hence, the need for advanced signal processing tools able to quantify AF impact on heart substrate and assess the effectiveness of the CA therapy in an objective and ...

Marianna Meo — Université Nice Sophia Antipolis


Methods For Detection and Classification In ECG Analysis

The first part of the presented work is focused on measuring of QT intervals. QT interval can be an indicator of the cardiovascular health of the patient and detect any potential abnormalities. The QT interval is measured from the onset of the QRS complex to the end of the T wave. However, measurements for the end of the T wave are often highly subjective and the corresponding verification is difficult. Here we propose two methods of QT interval measuring – wavelet based and template matching method. Methods are compared with each other and tested on standard QT database. The second part of the presented work is focused on modelling of arrhythmias using McSharry’s model followed with classification using an artificial neural network. The proposed method uses pre-processing of signals with Linear Approximation Distance Thresholding method and Line Segment Clustering method ...

Kicmerova, Dina — Brno University of Technology / Department of Biomedical Engineering


Security/Privacy Analysis of Biometric Hashing and Template Protection for Fingerprint Minutiae

This thesis has two main parts. The first part deals with security and privacy analysis of biometric hashing. The second part introduces a method for fixed-length feature vector extraction and hash generation from fingerprint minutiae. The upsurge of interest in biometric systems has led to development of biometric template protection methods in order to overcome security and privacy problems. Biometric hashing produces a secure binary template by combining a personal secret key and the biometric of a person, which leads to a two factor authentication method. This dissertation analyzes biometric hashing both from a theoretical point of view and in regards to its practical application. For theoretical evaluation of biohashes, a systematic approach which uses estimated entropy based on degree of freedom of a binomial distribution is outlined. In addition, novel practical security and privacy attacks against face image hashing ...

Berkay Topcu — Sabanci University


Ultra low-power biomedical signal processing: an analog wavelet filter approach for pacemakers

The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and others that are more diffuse (e.g., small oscillations). This requires the use of analysis methods sufficiently versatile to handle events that can be at opposite extremes in terms of their time-frequency localization. Wavelet Transform (WT) has been extensively used in biomedical signal processing, mainly due to the versatility of the wavelet tools. The WT has been shown to be a very efficient tool for local analysis of nonstationary and fast transient signals due ...

Haddad, Sandro Augusto Pavlík — Delft University of Technology


Steganoflage: A New Image Steganography Algorithm

Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio and video files. It comes under the assumption that if the feature is visible, the point of attack is evident, thus the goal here is always to conceal the very existence of the embedded data. It does not replace cryptography but rather boosts the security using its obscurity features. Steganography has various useful applications. However, like any other science it can be used for ill intentions. It has been propelled to the forefront of current security techniques by the remarkable growth in computational power, the increase in security awareness, e.g., individuals, groups, agencies, government and through intellectual pursuit. Steganography’s ultimate objectives, which are undetectability, robustness, resistance to various image processing methods and compression, and capacity of the hidden data, are the main factors ...

Cheddad Abbas — University of Ulster


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Decision threshold estimation and model quality evaluation techniques for speaker verification

The number of biometric applications has increased a lot in the last few years. In this context, the automatic person recognition by some physical traits like fingerprints, face, voice or iris, plays an important role. Users demand this type of applications every time more and the technology seems already mature. People look for security, low cost and accuracy but, at the same time, there are many other factors in connection with biometric applications that are growing in importance. Intrusiveness is undoubtedly a burning factor to decide about the biometrics we will used for our application. At this point, one can realize about the suitability of speaker recognition because voice is the natural way of communicating, can be remotely used and provides a low cost. Automatic speaker recognition is commonly used in telephonic applications although it can also be used in ...

Rodriguez Saeta, Javier — Universitat Politecnica de Catalunya


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


Heart rate variability : linear and nonlinear analysis with applications in human physiology

Cardiovascular diseases are a growing problem in today’s society. The World Health Organization (WHO) reported that these diseases make up about 30% of total global deaths and that heart diseases have no geographic, gender or socioeconomic boundaries. Therefore, detecting cardiac irregularities early-stage and a correct treatment are very important. However, this requires a good physiological understanding of the cardiovascular system. The heart is stimulated electrically by the brain via the autonomic nervous system, where sympathetic and vagal pathways are always interacting and modulating heart rate. Continuous monitoring of the heart activity is obtained by means of an ElectroCardioGram (ECG). Studying the fluctuations of heart beat intervals over time reveals a lot of information and is called heart rate variability (HRV) analysis. A reduction of HRV has been reported in several cardiological and noncardiological diseases. Moreover, HRV also has a prognostic ...

Vandeput, Steven — KU Leuven


Glottal Source Estimation and Automatic Detection of Dysphonic Speakers

Among all the biomedical signals, speech is among the most complex ones since it is produced and received by humans. The extraction and the analysis of the information conveyed by this signal are the basis of many applications, including the topics discussed in this thesis: the estimation of the glottal source and the automatic detection of voice pathologies. In the first part of the thesis, after a presentation of existing methods for the estimation of the glottal source, a focus is made on the occurence of irregular glottal source estimations when the representation based on the Zeros of the Z-Transform (ZZT) is concerned. As this method is sensitive to the location of the analysis window, it is proposed to regularize the estimation by shifting the analysis window around its initial location. The best shift is found by using a dynamic ...

Dubuisson, Thomas — University of Mons

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.