Cooperative Techniques for Interference Management in Wireless Networks

In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...

Lameiro, Christian — University of Cantabria


Cooperative and Cognitive Communication Techniques for Wireless Networks

During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...

Tsinos, Christos — University of Patras


Interweave/Underlay Cognitive Radio Techniques and Applications in Satellite Communication Systems

The demand for precious radio spectrum is continuously increasing while the available radio frequency resource has become scarce due to spectrum segmentation and the dedicated frequency allocation of standardized wireless systems. This scarcity has led to the concept of cognitive radio communication which comprises a variety of techniques capable of allowing the coexistence of licensed and unlicensed systems over the same spectrum. In this context, this thesis focuses on interweave and underlay cognitive radio paradigms which are widely considered as important enablers for realising cognitive radio technology. In the interweave paradigm, an unlicensed user explores the spectral holes by means of some spectrum awareness methods and utilizes the available spectral availabilities opportunistically while in the underlay paradigm, an unlicensed user is allowed to coexist with the licensed user only if sufficient protection to the licensed user can be guaranteed. Starting ...

Sharma, Shree Krishna — SnT, University of Luxembourg


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Stochastic Schemes for Dynamic Network Resource Allocation

Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...

Lopez Ramos, Luis Miguel — King Juan Carlos University


Resource Management in Multicarrier Based Cognitive Radio Systems

The ever-increasing growth of the wireless application and services affirms the importance of the effective usage of the limited radio spectrum. Existing spectrum management policies have led to significant spectrum under-utilization. Recent measurements showed that large range of the spectrum is sparsely used in both temporal and spatial manner. This conflict between the inefficient usage of the spectrum and the continuous evolution in the wireless communication calls upon the development of more flexible management policies. Cognitive radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in making the best solution of this conflict by allowing a group of secondary users (SUs) to share the radio spectrum originally allocated to the primary user (PUs). The operation of CR should not negatively alter the performance of the PUs. Therefore, the interference control along with the highly ...

Musbah Shaat — Universitat Politecnica de Catalunya


Multi-Cell Multi-User MIMO Aspects: Delay, Transceiver Design, User Selection and Topology

In order to meet ever-growing needs for capacity in wireless networks, transmission techniques and the system models used to study their performances have rapidly evolved. From single-user single-antenna point-to-point communications to modern multi-cell multi-antenna cellular networks there have been large advances in technology. Along the way, several assumptions are made in order to have either more realistic models, but also to allow simpler analysis. We analyze three aspects of actual networks and try to benefit from them when possible or conversely, to mitigate their negative impact. This sometimes corrects overly optimistic results, for instance when delay in the channel state information (CSI) acquisition is no longer neglected. However, this sometimes also corrects overly pessimistic results, for instance when in a broadcast channel (BC) the number of users is no longer limited to be equal to the number of transmit antennas ...

Lejosne, Yohan — Telecom ParisTech


Massive MIMO: Fundamentals and System Designs

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...

Ngo, Quoc Hien — Linköping University


Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...

Zhang, Jianshu — Ilmenau University of Technology


Distributed Coordination in Multiantenna Cellular Networks

Wireless communications are important in our highly connected world. The amount of data being transferred in cellular networks is steadily growing, and consequently more capacity is needed. This thesis considers the problem of downlink capacity improvement from the perspective of multicell coordination. By employing multiple antennas at the transmitters and receivers of a multicell network, the inherent spatial selectivity of the users can be exploited in order to increase the capacity through linear precoding and receive filtering. For the coordination between cells, distributed algorithms are often sought due to their low implementation complexity and robustness. In this context, the thesis considers two problem domains: base station clustering and coordinated precoding. Base station clustering corresponds to grouping the cell base stations into disjoint clusters in order to reduce the coordination overhead. This is needed in intermediate-sized to large networks, where the ...

Brandt, Rasmus — KTH Royal Institute of Technology


Impact of channel state information on the analysis and design of multiantenna communication systems

During the last decade, there has been a steady increase in the demand of high data rates that are to be supported by wireless communication applications. Among the different solutions that have been proposed by the research community to cope with this new demand, the utilization of multiple antennas arises as one of the best candidates due to the fact that it provides both an increase in reliability and also in information transmission rate. Although the use of multiple antennas at the receiver side dates back from the sixties, the full potential of multiple antennas at both communication ends has been both theoretically and practically recognized in the last few years. The design of proper multi-antenna communication systems to satisfy the high data rates demand depends not only on the chosen figure of merit or performance metric, but also on ...

Payaró Llisterri, Miquel — Centre Technologic de Telecomunicacions de Catalunya


Robust Game-Theoretic Algorithms for Distributed Resource Allocation in Wireless Communications

The predominant game-theoretic solutions for distributed rate-maximization algorithms in Gaussian interference channels through optimal power control require perfect channel knowledge, which is not possible in practice due to various reasons, such as estimation errors, feedback quantization and latency between channel estimation and signal transmission. This thesis therefore aims at addressing this issue through the design and analysis of robust game-theoretic algorithms for rate-maximization in Gaussian interference channels in the presence of bounded channel uncertainty. A robust rate-maximization game is formulated for the single-antenna frequency-selective Gaussian interference channel under bounded channel uncertainty. The robust-optimization equilibrium solution for this game is independent of the probability distribution of the channel uncertainty. The existence and uniqueness of the equilibrium are studied and sufficient conditions for the uniqueness of the equilibrium are provided. Distributed algorithms to compute the equilibrium solution are presented and shown to ...

Anandkumar, Amod Jai Ganesh — Loughborough University


Multifunction Radios and Interference Suppression for Enhanced Reliability and Security of Wireless Systems

Wireless connectivity, with its relative ease of over-the-air information sharing, is a key technological enabler that facilitates many of the essential applications, such as satellite navigation, cellular communication, and media broadcasting, that are nowadays taken for granted. However, that relative ease of over-the-air communications has significant drawbacks too. On one hand, the broadcast nature of wireless communications means that one receiver can receive the superposition of multiple transmitted signals. But on the other hand, it means that multiple receivers can receive the same transmitted signal. The former leads to congestion and concerns about reliability because of the limited nature of the electromagnetic spectrum and the vulnerability to interference. The latter means that wirelessly transmitted information is inherently insecure. This thesis aims to provide insights and means for improving physical layer reliability and security of wireless communications by, in a sense, ...

Pärlin, Karel — Tampere University


Channel State Information and Joint Transmiter-Receiver Design in Multy Antenna Systems

This Ph.D. dissertation addresses the design of multi-antenna systems, where the most general case corresponds to a transmitter and a receiver with more than one antenna, i.e., a multiple-input-multiple-output (MIMO) channel. The main advantage is that they can provide a much better performance than single-antenna systems, both in terms of transmission quality and system capacity, i.e., number of users that can be served simultaneously. The objective is to carry out a joint transmitter-receiver design, which depends directly on the quantity and the quality of the available channel state information (CSI). In this dissertation, the impact of the CSI on the design has been analyzed. More specifically, the dissertation first focuses the attention on a single-user MIMO channel with perfect CSI, and then extends the design to the multi-user case, both of them based a on joint linear beamforming architecture. Then, ...

Pascual iserte, Antonio — CTTC-Centre Tecnològic de Telecomunicacions de Catalunya


A Unified Framework for Communications through MIMO Channels

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) CHANNELS constitute a unified way of modeling a wide range of different physical communication channels, which can then be handled with a compact and elegant vector-matrix notation. The two paradigmatic examples are wireless multi-antenna channels and wireline Digital Subscriber Line (DSL) channels. Research in antenna arrays (also known as smart antennas) dates back to the 1960s. However, the use of multiples antennas at both the transmitter and the receiver, which can be naturally modeled as a MIMO channel, has been recently shown to offer a significant potential increase in capacity. DSL has gained popularity as a broadband access technology capable of reliably delivering high data rates over telephone subscriber lines. A DSL system can be modeled as a communication through a MIMO channel by considering all the copper twisted pairs within a binder as a whole rather ...

Palomar, Daniel Perez — Technical University of Catalonia (UPC)

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.