Fire Detection Algorithms Using Multimodal Signal and Image Analysis

Dynamic textures are common in natural scenes. Examples of dynamic textures in video include fire, smoke, clouds, volatile organic compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc. Researchers extensively studied 2-D textures and related problems in the fields of image processing and computer vision. On the other hand, there is very little research on dynamic texture detection in video. In this dissertation, signal and image processing methods developed for detection of a specific set of dynamic textures are presented. Signal and image processing methods are developed for the detection of flames and smoke in open and large spaces with a range of up to $30$m to the camera in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire. Edges present in image frames with smoke start loosing their sharpness ...

Toreyin, Behcet Ugur — Bilkent University


Multispectral Image Processing and Pattern Recognition Techniques for Quality Inspection of Apple Fruits

Machine vision applies computer vision to industry and manufacturing in order to control or analyze a process or activity. Typical application of machine vision is the inspection of produced goods like electronic devices, automobiles, food and pharmaceuticals. Machine vision systems form their judgement based on specially designed image processing softwares. Therefore, image processing is very crucial for their accuracy. Food industry is among the industries that largely use image processing for inspection of produce. Fruits and vegetables have extremely varying physical appearance. Numerous defect types present for apples as well as high natural variability of their skin color brings apple fruits into the center of our interest. Traditional inspection of apple fruits is performed by human experts. But, automation of this process is necessary to reduce error, variation, fatigue and cost due to human experts as well as to increase ...

Unay, Devrim — Universite de Mons


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon


Meningioma Classification using an Adaptive Discriminant Wavelet Packet Transform

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerized histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means ...

Qureshi, Hammad — University of Warwick


Meningioma (Brain Tumor) Classification using an Adaptive Discriminant Wavelet Packet Transform

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for ...

Qureshi, Hammad — University of Warwick


Camera based motion estimation and recognition for human-computer interaction

Communicating with mobile devices has become an unavoidable part of our daily life. Unfortunately, the current user interface designs are mostly taken directly from desktop computers. This has resulted in devices that are sometimes hard to use. Since more processing power and new sensing technologies are already available, there is a possibility to develop systems to communicate through different modalities. This thesis proposes some novel computer vision approaches, including head tracking, object motion analysis and device ego-motion estimation, to allow efficient interaction with mobile devices. For head tracking, two new methods have been developed. The first method detects a face region and facial features by employing skin detection, morphology, and a geometrical face model. The second method, designed especially for mobile use, detects the face and eyes using local texture features. In both cases, Kalman filtering is applied to estimate ...

Hannuksela, Jari — University of Oulou


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Feature Extraction and Data Reduction for Hyperspectral Remote Sensing Earth Observation

Earth observation and land-cover analysis became a reality in the last 2-3 decades thanks to NASA airborne and spacecrafts such as Landsat. Inclusion of Hyperspectral Imaging (HSI) technology in some of these platforms has made possible acquiring large data sets, with high potential in analytical tasks but at the cost of advanced signal processing. In this thesis, effective/efficient feature extraction methods are proposed. Initially, contributions are introduced for efficient computation of the covariance matrix widely used in data reduction methods such as Principal Component Analysis (PCA). By taking advantage of the cube structure in HSI, onsite and real-time covariance computation is achieved, reducing memory requirements as well. Furthermore, following the PCA algorithm, a novel method called Folded-PCA (Fd-PCA) is proposed for efficiency while extracting both global and local features within the spectral pixels, achieved by folding the spectral samples from ...

Zabalza, Jaime — University of Strathclyde


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


Representation Learning and Information Fusion: Applications in Biomedical Image Processing

In recent years Machine Learning and in particular Deep Learning have excelled in object recognition and classification tasks in computer vision. As these methods extract features from the data itself by learning features that are relevant for a particular task, a key aspect of this remarkable success is the amount of data on which these methods train. Biomedical applications face the problem that the amount of training data is limited. In particular, labels and annotations are usually scarce and expensive to obtain as they require biological or medical expertise. One way to overcome this issue is to use additional knowledge about the data at hand. This guidance can come from expert knowledge, which puts focus on specific, relevant characteristics in the images, or geometric priors which can be used to exploit the spatial relationships in the images. This thesis presents ...

Elisabeth Wetzer — Uppsala University


Computational Attention: Modelisation and Application to Audio and Image Processing

Consciously or unconsciously, humans always pay attention to a wide variety of stimuli. Attention is part of daily life and it is the first step to understanding. The proposed thesis deals with a computational approach to the human attentional mechanism and with its possible applications mainly in the field of computer vision. In a first stage, the text introduces a rarity-based three-level attention model handling monodimensional signals as well as images or video sequences. The concept of attention is defined as the transformation of a huge acquired unstructured data set into a smaller structured one while preserving the information: the attentional mechanism turns rough data into intelligence. Afterwards, several applications are described in the fields of machine vision, signal coding and enhancement, medical imaging, event detection and so on. These applications not only show the applicability of the proposed computational ...

Mancas, Matei — Universite de Mons


Contributions to the Information Fusion : application to Obstacle Recognition in Visible and Infrared Images

The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...

Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen


Visual Analysis of Faces with Application in Biometrics, Forensics and Health Informatics

Computer vision-based analysis of human facial video provides information regarding to expression, diseases symptoms, and physiological parameters such as heartbeat rate, blood pressure and respiratory rate. It also provides a convenient source of heartbeat signal to be used in biometrics and forensics. This thesis is a collection of works done in five themes in the realm of computer vision-based facial image analysis: Monitoring elderly patients at private homes, Face quality assessment, Measurement of physiological parameters, Contact-free heartbeat biometrics, and Decision support system for healthcare. The work related to monitoring elderly patients at private homes includes a detailed survey and review of the monitoring technologies relevant to older patients living at home by discussing previous reviews and relevant taxonomies, different scenarios for home monitoring solutions for older patients, sensing and data acquisition techniques, data processing and analysis techniques, available datasets for ...

Haque, Mohammad Ahsanul — Aalborg Univeristy


Improvements in Pose Invariance and Local Description for Gabor-based 2D Face Recognition

Automatic face recognition has attracted a lot of attention not only because of the large number of practical applications where human identification is needed but also due to the technical challenges involved in this problem: large variability in facial appearance, non-linearity of face manifolds and high dimensionality are some the most critical handicaps. In order to deal with the above mentioned challenges, there are two possible strategies: the first is to construct a “good” feature space in which the manifolds become simpler (more linear and more convex). This scheme usually comprises two levels of processing: (1) normalize images geometrically and photometrically and (2) extract features that are stable with respect to these variations (such as those based on Gabor filters). The second strategy is to use classification structures that are able to deal with non-linearities and to generalize properly. To ...

Gonzalez-Jimenez, Daniel — University of Vigo


Advances in Detection and Classification for Through-the-Wall Radar Imaging

In this PhD thesis the problem of detection and classification of stationary targets in Through-the-Wall Radar Imaging is considered. A multiple-view framework is used in which a 3D scene of interest is imaged from a set of vantage points. By doing so, clutter and noise is strongly suppressed and target detectability increased. In target detection, centralized as well as decentralized frameworks for simultaneous image fusion and detection are examined. The practical case when no prior knowledge on image statistics is available and all inference must be drawn from the data at hand is specifically considered. An adaptive detection scheme is proposed which iteratively adapts in a non-stationary environment. Optimal configurations for this scheme are derived based on morphological operations which allow for automatic and reliable target detection. In a decentralized framework, local decisions are transmitted to a fusion center to ...

Debes, Christian — Technical University of Darmstad

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.