Automated Melanoma Detection in Dermoscopic Images (2023)
Extended Bag-of-Words Formalism for Image Classification
Visual information, in the form of digital images and videos, has become so omnipresent in computer databases and repositories, that it can no longer be considered a “second class citizen”, eclipsed by textual information. In that scenario, image classification has become a critical task. In particular, the pursuit of automatic identification of complex semantical concepts represented in images, such as scenes or objects, has motivated researchers in areas as diverse as Information Retrieval, Computer Vision, Image Processing and Artificial Intelligence. Nevertheless, in contrast to text documents, whose words carry semantic, images consist of pixels that have no semanticinformation by themselves, making the task very challenging. In this dissertation, we have addressed the problem of representing images based on their visual information. Our aim is content-based concept detection in images and videos, with a novel representation that enriches the Bag-of-Words model. ...
Avila, Sandra Eliza Fontes — Universidade Federal de Minas Gerais, Université Pierre et Marie Curie
Machine vision applies computer vision to industry and manufacturing in order to control or analyze a process or activity. Typical application of machine vision is the inspection of produced goods like electronic devices, automobiles, food and pharmaceuticals. Machine vision systems form their judgement based on specially designed image processing softwares. Therefore, image processing is very crucial for their accuracy. Food industry is among the industries that largely use image processing for inspection of produce. Fruits and vegetables have extremely varying physical appearance. Numerous defect types present for apples as well as high natural variability of their skin color brings apple fruits into the center of our interest. Traditional inspection of apple fruits is performed by human experts. But, automation of this process is necessary to reduce error, variation, fatigue and cost due to human experts as well as to increase ...
Unay, Devrim — Universite de Mons
Constrained Non-negative Matrix Factorization for Vocabulary Acquisition from Continuous Speech
One desideratum in designing cognitive robots is autonomous learning of communication skills, just like humans. The primary step towards this goal is vocabulary acquisition. Being different from the training procedures of the state-of-the-art automatic speech recognition (ASR) systems, vocabulary acquisition cannot rely on prior knowledge of language in the same way. Like what infants do, the acquisition process should be data-driven with multi-level abstraction and coupled with multi-modal inputs. To avoid lengthy training efforts in a word-by-word interactive learning process, a clever learning agent should be able to acquire vocabularies from continuous speech automatically. The work presented in this thesis is entitled \emph{Constrained Non-negative Matrix Factorization for Vocabulary Acquisition from Continuous Speech}. Enlightened by the extensively studied techniques in ASR, we design computational models to discover and represent vocabularies from continuous speech with little prior knowledge of the language to ...
Sun, Meng — Katholieke Universiteit Leuven
Direct Pore-based Identification For Fingerprint Matching Process
Fingerprint, is considered one of the most crucial scientific tools in solving criminal cases. This biometric feature is composed of unique and distinctive patterns found on the fingertips of each individual. With advancing technology and progress in forensic sciences, fingerprint analysis plays a vital role in forensic investigations and the analysis of evidence at crime scenes. The fingerprint patterns of each individual start to develop in early stagesof life and never change thereafter. This fact makes fingerprints an exceptional means of identification. In criminal cases, fingerprint analysis is used to decipher traces, evidence, and clues at crime scenes. These analyses not only provide insights into how a crime was committed but also assist in identifying the culprits or individuals involved. Computer-based fingerprint identification systems yield faster and more accurate results compared to traditional methods, making fingerprint comparisons in large databases ...
Vedat DELICAN, PhD — Istanbul Technical University
Video Content Analysis by Active Learning
Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...
Camara Chavez, Guillermo — Federal University of Minas Gerais
Analysis and improvement of quantification algorithms for magnetic resonance spectroscopy
Magnetic Resonance Spectroscopy (MRS) is a technique used in fundamental research and in clinical environments. During recent years, clinical application of MRS gained importance, especially as a non-invasive tool for diagnosis and therapy monitoring of brain and prostate tumours. The most important asset of MRS is its ability to determine the concentration of chemical substances non-invasively. To extract relevant signal parameters, MRS data have to be quantified. This usually doesn¢t prove to be straightforward since in vivo MRS signals are characterized by poor signal-to-noise ratios, overlapping peaks, acquisition related artefacts and the presence of disturbing components (e.g. residual water in proton spectra). The work presented in this thesis aims to improve the quantification in different applications of MRS in vivo. To obtain the signal parameters related to MRS data, different approaches were suggested in the past. Black-box methods, don¢t require ...
Pels, Pieter — Katholieke Universiteit Leuven
Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...
Yang, Guang — University College London
This thesis focuses on wearables for health status monitoring, covering applications aimed at emergency solutions to the COVID-19 pandemic and aging society. The methods of ambient assisted living (AAL) are presented for the neurodegenerative disease Parkinson’s disease (PD), facilitating ’aging in place’ thanks to machine learning and around wearables - solutions of mHealth. Furthermore, the approaches using machine learning and wearables are discussed for early-stage COVID-19 detection, with encouraging accuracy. Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control data was reused for research purposes. The solution presented in this thesis is considering the classification problem and outperformed the state-of-the-art methods, whereas the original paper introduced just anomaly detection and not shown the specificity of the created models. The proposed model in the thesis for early detection of COVID-19 achieved 78 % for the k-NN classifier. Moreover, a ...
Justyna Skibińska — Brno University of Technology & Tampere University
Steganoflage: A New Image Steganography Algorithm
Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio and video files. It comes under the assumption that if the feature is visible, the point of attack is evident, thus the goal here is always to conceal the very existence of the embedded data. It does not replace cryptography but rather boosts the security using its obscurity features. Steganography has various useful applications. However, like any other science it can be used for ill intentions. It has been propelled to the forefront of current security techniques by the remarkable growth in computational power, the increase in security awareness, e.g., individuals, groups, agencies, government and through intellectual pursuit. Steganography’s ultimate objectives, which are undetectability, robustness, resistance to various image processing methods and compression, and capacity of the hidden data, are the main factors ...
Cheddad Abbas — University of Ulster
Acoustic sensor network geometry calibration and applications
In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...
Plinge, Axel — TU Dortmund University
Development of an automated neonatal EEG seizure monitor
Brain function requires a continuous flow of oxygen and glucose. An insufficient supply for a few minutes during the first period of life may have severe consequences or even result in death. This happens in one to six infants per 1000 live term births. Therefore, there is a high need for a method which can enable bedside brain monitoring to identify those neonates at risk and be able to start the treatment in time. The most important currently available technology to continuously monitor brain function is electroEncephaloGraphy (or EEG). Unfortunately, visual EEG analysis requires particular skills which are not always present round the clock in the Neonatal Intensive Care Unit (NICU). Even if those skills are available it is laborsome to manually analyse many hours of EEG. The lack of time and skill are the main reasons why EEG is ...
Deburchgraeve, Wouter — KU Leuven
Digital Processing Based Solutions for Life Science Engineering Recognition Problems
The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...
Hussein, Walid — Technische Universität München
Spike train discrimination and analysis in neural and surface electromyography (sEMG) applications
The term "spike" is used to describe a short-time event that is the result of the activity of its source. Spikes can be seen in different signal modalities. In these modalities, often more than one source generates spikes. Classification algorithms can be used to group similar spikes, ideally spikes from the same source. This work examines the classification of spikes generated from neurons and muscles. When each detected spike is assigned to its source, the spike trains of these sources can provide information on complex brain network functioning, muscle disorders, and other applications. During the past several decades, there were many attempts to create and improve spike classification algorithms. No matter how advanced these methods are today, errors in classification cannot be avoided. Therefore, methods that would determine and improve reliability of classification are very desirable. In this work, it ...
Gligorijevic, Ivan — KU Leuven
Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...
Laudadio, Teresa — Katholieke Universiteit Leuven
Multimodal epileptic seizure detection : towards a wearable solution
Epilepsy is one of the most common neurological disorders, which affects almost 1% of the population worldwide. Anti-epileptic drugs provide adequate treatment for about 70% of epilepsy patients. The remaining 30% of the patients continue to have seizures, which drastically affects their quality of life. In order to obtain efficacy measures of therapeutic interventions for these patients, an objective way to count and document seizures is needed. However, in an outpatient setting, one of the major problems is that seizure diaries kept by patients are unreliable. Automated seizure detection systems could help to objectively quantify seizures. Those detection systems are typically based on full scalp Electroencephalography (EEG). In an outpatient setting, full scalp EEG is of limited use because patients will not tolerate wearing a full EEG cap for long time periods during daily life. There is a need for ...
Vandecasteele, Kaat — KU Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.