Distributed Spatial Filtering in Wireless Sensor Networks (2023)
Distributed Adaptive Spatial Filtering in Resource-constrained Sensor Networks
Wireless sensor networks consist in a collection of battery-powered sensors able to gather, process and send data. They are typically used to monitor various phenomenons, in a plethora of fields, from environmental studies to smart logistics. Their wireless connectivity and relatively small size allow them to be deployed practically anywhere, even underwater or embedded in everyday clothing, and possibly capture data over a large area for extended periods of time. Their usefulness is therefore tied to their ability to work autonomously, with as little human intervention as possible. This functional requirement directly translates into two design constraints: (i) bandwidth and on-board compute must be used sparingly, in order to extend battery-life as much as possible, and (ii) the system must be resilient to node failures and changing environment. Due to their limited computing capabilities, data processing is usually performed by ...
Hovine, Charles — KU Leuven
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph — KU Leuven
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph C. — KU Leuven
This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...
Bogdanovic, Nikola — University of Patras
Signal processing algorithms for wireless acoustic sensor networks
Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...
Bertrand, Alexander — Katholieke Universiteit Leuven
Performance Analysis and Algorithm Design for Distributed Transmit Beamforming
Wireless sensor networks has been one of the major research topics in recent years because of its great potential for a wide range of applications. In some application scenarios, sensor nodes intend to report the sensing data to a far-field destination, which cannot be realized by traditional transmission techniques. Due to the energy limitations and the hardware constraints of sensor nodes, distributed transmit beamforming is considered as an attractive candidate for long-range communications in such scenarios as it can reduce energy requirement of each sen-sor node and extend the communication range. However, unlike conventional beamforming, which is performed by a centralized antenna array, distributed beamforming is performed by a virtual antenna array composed of randomly located sensor nodes, each of which has an independent oscillator. Sensor nodes have to coordinate with each other and adjust their transmitting signals to collaboratively ...
Song, Shuo — University of Edinburgh
In recent years, advances in signal processing have led the wireless sensor networks to be capable of mobility. The signal processing in a wireless sensor network differs from that of a traditional wireless network mainly in two important aspects. Unlike traditional wireless networks, in a sensor network the signal processing is performed in a fully distributed manner as the sensor measurements in a distributed fashion across the network collected. Additionally, due to the limited onboard resource of a sensor network it is essential to develop energy and bandwidth efficient signal processing algorithms. The thesis is devoted to discuss the state of the arte of algorithms commonly known as tracking algorithms. Although tracking algorithms have only been attracting research and development attention recently, already a wide literature and great variety of proposed approaches regarding the topic exist. The dissertation focus on ...
Arienzo, Loredana — University of Salerno
Distributed Signal Processing Algorithms for Wireless Networks
Distributed signal processing algorithms have become a key approach for statistical inference in wireless networks and applications such as wireless sensor networks and smart grids. It is well known that distributed processing techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. In this context, for each specific node, a set of neighbor nodes collect their local information and transmit the estimates to a specific node. Then, each specific node combines the collected information together with its local estimate to generate an improved estimate. In this thesis, novel distributed cooperative algorithms for inference in ad hoc, wireless sensor networks and smart grids are investigated. Low-complexity and effective algorithms to perform statistical inference in a distributed way are devised. A number of innovative approaches for dealing with node failures, compression of data ...
Xu, Songcen — University of York
Algorithms for Energy-Efficient Adaptive Wireless Sensor Networks
In this thesis we focus on the development of energy-efficient adaptive algorithms for Wireless Sensor Networks. Its contributions can be arranged in two main lines. Firstly, we focus on the efficient management of energy resources in WSNs equipped with finite-size batteries and energy-harvesting devices. To that end, we propose a censoring scheme by which the nodes are able to decide if a message transmission is worthy or not given their energetic condition. In order to do so, we model the system using a Markov Decision Process and use this model to derive optimal policies. Later, these policies are analyzed in simplified scenarios in order to get insights of their features. Finally, using Stochastic Approximation, we develop low-complexity censoring algorithms that approximate the optimal policy, with less computational complexity and faster convergence speed than other approaches such as Q-learning. Secondly, we ...
Fernandez-Bes, Jesus — Universidad Carlos III de Madrid
Robust Adaptive Machine Learning Algorithms for Distributed Signal Processing
Distributed networks comprising a large number of nodes, e.g., Wireless Sensor Networks, Personal Computers (PC’s), laptops, smart phones, etc., which cooperate with each other in order to reach a common goal, constitute a promising technology for several applications. Typical examples include: distributed environmental monitoring, acoustic source localization, power spectrum estimation, etc. Sophisticated cooperation mechanisms can significantly benefit the learning process, through which the nodes achieve their common objective. In this dissertation, the problem of adaptive learning in distributed networks is studied, focusing on the task of distributed estimation. A set of nodes sense information related to certain parameters and the estimation of these parameters constitutes the goal. Towards this direction, nodes exploit locally sensed measurements as well as information springing from interactions with other nodes of the network. Throughout this dissertation, the cooperation among the nodes follows the diffusion optimization ...
Chouvardas, Symeon — National and Kapodistrian University of Athens
Adaptive Algorithms and Variable Structures for Distributed Estimation
The analysis and design of new non-centralized learning algorithms for potential application in distributed adaptive estimation is the focus of this thesis. Such algorithms should be designed to have low processing requirement and to need minimal communication between the nodes which would form a distributed network. They ought, moreover, to have acceptable performance when the nodal input measurements are coloured and the environment is dynamic. Least mean square (LMS) and recursive least squares (RLS) type incremental distributed adaptive learning algorithms are first introduced on the basis of a Hamiltonian cycle through all of the nodes of a distributed network. These schemes require each node to communicate only with one of its neighbours during the learning process. An original steady-steady performance analysis of the incremental LMS algorithm is performed by exploiting a weighted spatial-temporal energy conservation formulation. This analysis confirms that ...
Li, Leilei — Loughborough University
Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications
In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...
Chepuri, Sundeep Prabhakar — Delft University of Technology
Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks
Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...
Hassani, Amin — KU Leuven
Convergence Analysis of Distributed Consensus Algorithms
Inspired by new emerging technologies and networks of devices with high collective computational power, I focus my work on the problematics of distributed algorithms. While each device runs a relatively simple algorithm with low complexity, the group of interconnected units (agents) determines a behavior of high complexity. Typically, such units have their own memory and processing unit, and are interconnected and capable to exchange information with each other. More specifically, this work is focused on the distributed consensus algorithms. Such algorithms allow the agents to coordinate their behaviour and to distributively find a common agreement (consensus). To understand and analyze their behaviour, it is necessary to analyze the convergence of the consensus algorithm, i.e., under which conditions the algorithm reaches a consensus and under which it does not. Naturally, the communication channel can change and the agents may function asynchronously ...
Sluciak, Ondrej — Vienna University of Technology
Adaptive Nonlocal Signal Restoration and Enhancement Techniques for High-Dimensional Data
The large number of practical applications involving digital images has motivated a significant interest towards restoration solutions that improve the visual quality of the data under the presence of various acquisition and compression artifacts. Digital images are the results of an acquisition process based on the measurement of a physical quantity of interest incident upon an imaging sensor over a specified period of time. The quantity of interest depends on the targeted imaging application. Common imaging sensors measure the number of photons impinging over a dense grid of photodetectors in order to produce an image similar to what is perceived by the human visual system. Different applications focus on the part of the electromagnetic spectrum not visible by the human visual system, and thus require different sensing technologies to form the image. In all cases, even with the advance of ...
Maggioni, Matteo — Tampere University of Technology
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.