Abstract / truncated to 115 words (read the full abstract)

The topic of this thesis is methods of pre-processing speech signals for robust estimation of model parameters in models of these signals. Here, there is a special focus on the situation where the desired signal is contaminated by colored noise. In order to estimate the speech signal, or its voiced and unvoiced components, from a noisy observation, it is important to have robust estimators that can handle colored and non-stationary noise. Two important aspects are investigated. The first one is a robust estimation of the speech signal parameters, such as the fundamental frequency, which is required in many contexts. For this purpose, fast estimation methods based on a simple white Gaussian noise (WGN) assumption are ... toggle 12 keywords

pre-whitening colored autoregressive NMF pitch fundamental frequency decomposition voiced unvoiced optimal filtering hybrid speech model noise psd

Information

Author
Esquivel Jaramillo, Alfredo
Institution
Aalborg University
Supervisors
Publication Year
2023
Upload Date
March 6, 2023

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.