Audio Signal Processing for Binaural Reproduction with Improved Spatial Perception (2020)
Synthetic reproduction of head-related transfer functions by using microphone arrays
Spatial hearing for human listeners is based on the interaural as well as on the monaural analysis of the signals arriving at both ears, enabling the listeners to assign certain spatial components to these signals. This spatial aspect gets lost when the signals are reproduced via headphones without considering the acoustical influence of the head and torso, i.e. head-related transfer function (HRTFs). A common procedure to take into account spatial aspects in a binaural reproduction is to use so-called artificial heads. Artificial heads are replicas of a human head and torso with average anthropometric geometries and built-in microphones in the ears. Although, the signals recorded with artificial heads contain relevant spatial aspects, binaural recordings using artificial heads often suffer from front-back confusions and the perception of the sound source being inside the head (internalization). These shortcomings can be attributed to ...
Rasumow, Eugen — University of Oldenburg
Mixed structural models for 3D audio in virtual environments
In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...
Geronazzo, Michele — University of Padova
Due to their decreased ability to understand speech hearing impaired may have difficulties to interact in social groups, especially when several people are talking simultaneously. Fortunately, in the last decades hearing aids have evolved from simple sound amplifiers to modern digital devices with complex functionalities including noise reduction algorithms, which are crucial to improve speech understanding in background noise for hearing-impaired persons. Since many hearing aid users are fitted with two hearing aids, so-called binaural hearing aids have been developed, which exchange data and signals through a wireless link such that the processing in both hearing aids can be synchronized. In addition to reducing noise and limiting speech distortion, another important objective of noise reduction algorithms in binaural hearing aids is the preservation of the listener’s impression of the acoustical scene, in order to exploit the binaural hearing advantage and ...
Marquardt, Daniel — University of Oldenburg, Germany
Preserving binaural cues in noise reduction algorithms for hearing aids
Hearing aid users experience great difficulty in understanding speech in noisy environments. This has led to the introduction of noise reduction algorithms in hearing aids. The development of these algorithms is typically done monaurally. However, the human auditory system is a binaural system, which compares and combines the signals received by both ears to perceive a sound source as a single entity in space. Providing two monaural, independently operating, noise reduction systems, i.e. a bilateral configuration, to the hearing aid user may disrupt binaural information, needed to localize sound sources correctly and to improve speech perception in noise. In this research project, we first examined the influence of commercially available, bilateral, noise reduction algorithms on binaural hearing. Extensive objective and perceptual evaluations showed that the bilateral adaptive directional microphone (ADM) and the bilateral fixed directional microphone, two of the most ...
Van den Bogaert, Tim — Katholieke Universiteit Leuven
This thesis deals with the efficient and flexible acquisition and processing of spatial sound using multiple microphones. In spatial sound acquisition and processing, we use multiple microphones to capture the sound of multiple sources being simultaneously active at a rever- berant recording side and process the sound depending on the application at the application side. Typical applications include source extraction, immersive spatial sound reproduction, or speech enhancement. A flexible sound acquisition and processing means that we can capture the sound with almost arbitrary microphone configurations without constraining the application at the ap- plication side. This means that we can realize and adjust the different applications indepen- dently of the microphone configuration used at the recording side. For example in spatial sound reproduction, where we aim at reproducing the sound such that the listener perceives the same impression as if he ...
Thiergart, Oliver — Friedrich-Alexander-Universitat Erlangen-Nurnberg
Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement
In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...
Jarrett, Daniel P. — Imperial College London
Parametric spatial audio processing utilising compact microphone arrays
This dissertation focuses on the development of novel parametric spatial audio techniques using compact microphone arrays. Compact arrays are of special interest since they can be adapted to fit in portable devices, opening the possibility of exploiting the potential of immersive spatial audio algorithms in our daily lives. The techniques developed in this thesis consider the use of signal processing algorithms adapted for human listeners, thus exploiting the capabilities and limitations of human spatial hearing. The findings of this research are in the following three areas of spatial audio processing: directional filtering, spatial audio reproduction, and direction of arrival estimation. In directional filtering, two novel algorithms have been developed based on the cross-pattern coherence (CroPaC). The method essentially exploits the directional response of two different types of beamformers by using their cross-spectrum to estimate a soft masker. The soft masker ...
Delikaris-Manias, Symeon — Aalto University
Application of Sound Source Separation Methods to Advanced Spatial Audio Systems
This thesis is related to the field of Sound Source Separation (SSS). It addresses the development and evaluation of these techniques for their application in the resynthesis of high-realism sound scenes by means of Wave Field Synthesis (WFS). Because the vast majority of audio recordings are preserved in two-channel stereo format, special up-converters are required to use advanced spatial audio reproduction formats, such as WFS. This is due to the fact that WFS needs the original source signals to be available, in order to accurately synthesize the acoustic field inside an extended listening area. Thus, an object-based mixing is required. Source separation problems in digital signal processing are those in which several signals have been mixed together and the objective is to find out what the original signals were. Therefore, SSS algorithms can be applied to existing two-channel mixtures to ...
Cobos, Maximo — Universidad Politecnica de Valencia
Performance Improvement of Multichannel Audio by Graphics Processing Units
Multichannel acoustic signal processing has undergone major development in recent years due to the increased complexity of current audio processing applications. People want to collaborate through communication with the feeling of being together and sharing the same environment, what is considered as Immersive Audio Schemes. In this phenomenon, several acoustic effects are involved: 3D spatial sound, room compensation, crosstalk cancelation, sound source localization, among others. However, high computing capacity is required to achieve any of these effects in a real large-scale system, what represents a considerable limitation for real-time applications. The increase of the computational capacity has been historically linked to the number of transistors in a chip. However, nowadays the improvements in the computational capacity are mainly given by increasing the number of processing units, i.e expanding parallelism in computing. This is the case of the Graphics Processing Units ...
Belloch, Jose A. — Universitat Politècnica de València
The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...
Woodruff, John — The Ohio State University
Speech Enhancement Algorithms for Audiological Applications
The improvement of speech intelligibility is a traditional problem which still remains open and unsolved. The recent boom of applications such as hands-free communi- cations or automatic speech recognition systems and the ever-increasing demands of the hearing-impaired community have given a definitive impulse to the research in this area. This PhD thesis is focused on speech enhancement for audiological applications. Most of the research conducted in this thesis has been focused on the improvement of speech intelligibility in hearing aids, considering the variety of restrictions and limitations imposed by this type of devices. The combination of source separation techniques and spatial filtering with machine learning and evolutionary computation has originated novel and interesting algorithms which are included in this thesis. The thesis is divided in two main parts. The first one contains a preliminary study of the problem and a ...
Ayllón, David — Universidad de Alcalá
Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...
Luis Valero, Maria — International Audio Laboratories Erlangen
Sparse Pulsed Auditory Representations For Speech and Audio Coding
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features most relevant to the human listener for coding applications. This thesis deals with the approach of `coding in the perceptual domain' and is based on an invertible auditory model that provides a pulsed auditory representation of the input speech or audio signal. It is natural for pulsed signal representations to encode only the non-zero samples by specifying their positions as side information. For the considered auditory representation, the number of pulses and, therefore, the amount of side information is too high for an efficient encoding at a relatively low bit rate. The focus of this work is to `sparsify' the pulsed signal representation, i.e., to remove its perceptual irrelevance and its redundancy, to obtain a compact signal representation, which facilitates ...
Christian Feldbauer — Graz University of Technology
Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...
Antonello, Niccolò — KU Leuven
Binaural Beamforming Algorithms and Parameter Estimation Methods Exploiting External Microphones
In everyday speech communication situations undesired acoustic sources, such as competing speakers and background noise, frequently lead to a decreased speech intelligibility. Over the last decades, hearing devices have evolved from simple sound amplification devices to more sophisticated devices with complex functionalities such as multi-microphone speech enhancement. Binaural beamforming algorithms are spatial filters that exploit the information captured by multiple microphones on both sides of the head of the listener. Besides reducing the undesired sources, another important objective of a binaural beamforming algorithm is the preservation of the binaural cues of all sound sources to preserve the listener's spatial impression of the acoustic scene. The aim of this thesis is to develop and evaluate advanced binaural beamforming algorithms and to incorporate one or more external microphones in a binaural hearing device configuration. The first focus is to improve state-of-the-art binaural ...
Gößling, Nico — University of Oldenburg
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.