Adaptive Equalisation for Downlink UMTS Terrestrial Radio Access

The third generation mobile system Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA) has been mainly specified to provide various multimedia capabilities and good service quality. However, since UMTS is based on direct sequence CDMA (DS-CDMA) techniques the performance and the capacity of such systems is significantly limited by multiuser access interference (MAI) and inter-symbol interference (ISI). Therefore, robust and reliable detectors are required to mitigate these effects. Specifically, the multi-user detector exhibits a significant improvement in capacity and spectrum efficiency compared with the conventional matched filter receiver and single-user detector. Nevertheless, its complexity and prior knowledge requirement render it unsuitable for application in the downlink due to handset constraints. In this thesis, we propose a new robust and simple blind multiuser equaliser for downlink DS-CDMA systems, the so-called filtered-R multiple error CM algorithm (FIRMER-CMA) equaliser. The latter has ...

Hadef, Mahmoud — University of Southampton


Advanced Interference Suppression Techniques for Spread Spectrum Systems

Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...

Yunlong Cai — University of York


Near Maximum Likelihood Multiuser Receivers for Direct Sequence Code Division Multiple Access

Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest ...

Sim, Hak Keong — University Of Edinburgh


On Adaptive MMSE Receiver Strategies for TD-CDMA

In this thesis a modified implementation of the adaptive minimum mean squared error (MMSE) receiver for a time division code division multiple access (TD-CDMA) system for third generation mobile communications is presented. This implementation can operate with spreading sequences which span over a few symbols and in environments where more than one spreading code is allocated to a single user. Two structures which combine the presented MMSE structure and the Rake receiver are also presented in an attempt to combine the advantages of both structures. After analysing the effect on a direct sequence spread spectrum system of multiple access interference and multipath fading induced inter-chip interference, the existing techniques for multiple access interference suppression capabilities are reviewed. Special attention is paid to the adaptive MMSE receiver, which takes into account the effect of multipath fading without requiring any additional channel ...

Garcia-Alis, Daniel — University of Strathclyde


Efficient Interference Suppression and Resource Allocation in MIMO and DS-CDMA Wireless Networks

Direct-sequence code-divisionmultiple-access (DS-CDMA) and multiple-input multiple-output (MIMO) wireless networks form the physical layer of the current generation of mobile networks and are anticipated to play a key role in the next generation of mobile networks. The improvements in capacity, data-rates and robustness that these networks provide come at the cost of increasingly complex interference suppression and resource allocation. Consequently, efficient approaches to these tasks are essential if the current rate of progression in mobile technology is to be sustained. In this thesis, linear minimum mean-square error (MMSE) techniques for interference suppression and resource allocation in DS-CDMA and cooperative MIMO networks are considered and a set of novel and efficient algorithms proposed. Firstly, set-membership (SM) reduced-rank techniques for interference suppression in DS-CDMA systems are investigated. The principals of SM filtering are applied to the adaptation of the projection matrix and reduced-rank ...

Patrick Clarke — University of York


Multi-user Receiver Structures for Direct Sequence Code Division Multiple Access

This thesis reports on an investigation of various system architectures and receiver structures for cellular communications systems which discriminate users by direct sequence code division multiple access (DSCDMA). Attention is focussed on the downlink of such a spread spectrum system and the influence of a number of design parameters is considered. The objective of the thesis is to investigate signal processing techniques which may be employed either at the receiver, or throughout the system to improve the overall capacity. The principles of spread spectrum communication are first outlined, including a discussion of the relative merits of spreading sequence sets, and a description of various signal processing techniques which are to be applied to the multi-user environment. The measure of system performance is introduced, and the conventional DS-CDMA system is analysed theoretically and through simulation to provide a reference performance level. ...

Band, Ian W. — University Of Edinburgh


Multiuser demodulation for DS-CDMA systems in fading channels

Multiuser demodulation algorithms for centralized receivers of asynchronous direct-sequence (DS) spread-spectrum code-division multiple-access (CDMA) systems in frequency-selective fading channels are studied. Both DS-CDMA systems with short (one symbol interval) and long (several symbol intervals) spreading sequences are considered. Linear multiuser receivers process ideally the complete received data block. The approximation of ideal infinite memory-length (IIR) linear multiuser detectors by finite memory-length (FIR) detectors is studied. It is shown that the FIR detectors can be made near-far resistant under a given ratio between maximum and minimum received power of users by selecting an appropriate memory-length. Numerical examples demonstrate the fact that moderate memory-lengths of the FIR detectors are sufficient to achieve the performance of the ideal IIR detectors even under severe near-far conditions. Multiuser demodulation in relatively fast fading channels is analyzed. The optimal maximum likelihood sequence detection receiver and suboptimal ...

Juntti, Markku — University of Oulou


Development of Fuzzy System Based Channel Equalisers

Channel equalisers are used in digital communication receivers to mitigate the effects of inter symbol interference (ISI) and inter user interference in the form of co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of additive white Gaussian noise (AWGN). An equaliser uses a large part of the computations involved in the receiver. Linear equalisers based on adaptive filtering techniques have long been used for this application. Recently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and radial basis functions (RBF) have shown encouraging results in this application. This thesis presents the development of a nonlinear fuzzy system based equaliser for digital communication receivers. The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbolby- symbol maximum a-posteriori probability (MAP) equaliser based on Bayes’s theory. This MAP equaliser is also called Bayesian equaliser. ...

Patra, Sarat Kumar — University Of Edinburgh


Study and optimization of multi-antenna systems associated with multicarrier modulations

Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...

LE NIR, Vincent — INSA de Rennes


Blind Equalisation for Space-Time Coding over ISI Channels

Multi-input multi-output (MIMO) channels are known to increase the capacity of a transmission link. This can be exploited to increase either the multiplexing gain or the diversity gain, which leads to a higher data throughput or a better resilience of the link to fading, respectively. This thesis is concerned with the diversity gain, which, in a flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC) scheme and a number of derivative techniques. For frequency selective fading, i.e. dispersive, MIMO channels, a few solutions have been reported in the literature including MIMO-OFDM, where the channel is decomposed into a number of narrowband problems, and a technique known as time-reversal STBC. For the latter, a number of blind adaptive algorithms have been derived, implemented and tested in order to avoid the requirement of explicit knowledge of the channel. The ...

Bendoukha, Samir — University of Strathclyde


Diversity Gain Enhancement for Extended Orthogonal Space-Time Block Coding in Wireless Communications

Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...

Hussin, Mohamed Nuri Ahmed — University of Strathclyde


Adaptive Equalisation for Impulsive Noise Environments

This thesis addresses the problem of adaptive channel equalisation in environments where the interfering noise exhibits non–Gaussian behaviour due to impulsive phenomena. The family of alpha–stable distributions has proved to be a suitable and flexible tool for the modelling of signals with impulsive nature. However, non–Gaussian alpha–stable signals have infinite variance, and signal processing techniques based on second order moments are meaningless in such environments. In order to exploit the flexibility of the stable family and still take advantage of the existing signal processing tools, a novel framework for the integration of the stable model in a communications context is proposed, based on a finite dynamic range receiver. The performance of traditional signal processing algorithms designed under the Gaussian assumption may degrade seriously in impulsive environments. When this degradation cannot be tolerated, the traditional signal processing methods must be revisited ...

Georgiades, Apostolos Theofani — University Of Edinburgh


Computationally Efficient Equalisation of Broadband Multiple-Input Multiple-Output Systems

Multiple-input multiple-output (MIMO) systems are encountered for example in communications if several transmit and receive antennas are empoyed, such that a separate transmit channel exists between every possible pairing of transmitter and receiver antennas. As a results if this spatial diversity, the channel capacity is dramatically increased over the single-inout single-output (SISO) case. While this increase is desired, the use of high data rates requires sophistiocated equalisation and/or detection schemes in the receiver to compensate for spatial and temporal dispersion in broadband MIMO channels, since a time-dispersive, in addition ot spatially-dispersice channel, must be assumed. The estimation of the broadband MIMO channel or its inverse is in general difficult and calls for training sequences that reduce the slot time for the transmission of actual data, which may counteract the promised gain in channel capacity. Another problem can be the computational ...

Bale, Viktor — University of Southampton


Ultra Wideband Communications: from Analog to Digital

The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...

Song, Nuan — Ilmenau University of Technology


Fast Blind Adaptive Equalisation for Multiuser CDMA Systems

In order to improve communication over a dispersive channel in a CDMA system, we have to re-establish the orthogonally of codes which are used when combining input signals from many users onto a single communication path, as otherwise the performance of such system is limited significantly by inter-symbol interference (ISI) and multiuser access interference (MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes to remove ISI and MAI have been reported in the literature, some of which rely on training sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or the Decision Directed algorithm (DD), which has similar convergence properties as the LMS in the absence of decision errors, the CMA is relatively slow compared to the DD ...

Daas, Adel — University of Strathclyde

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.