Communications for CubeSat Networks and Fractionalised Spacecraft (2017)
Wideband Data-Independent Beamforming for Subarrays
The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element. As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At ...
Alshammary, Abdullah — University of Strathclyde
Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems
Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...
Nwalozie, Gerald Chetachi — Technische Universität Ilmenau
Advanced Signal Processing Techniques for Global Navigation Satellite Systems
This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...
Fernandez-Prades, Carles — Universitat Politecnica de Catalunya
An ever-increasing demand for higher mobility, capacity and reliability, together with a definitive compromise with sustainability, are the hallmarks of mobile and wireless communications systems nowadays. Under these premises, smart antenna devices -capable of sensing the electromagnetic environment and suitably adapting its radiation features- are correspondingly called to play a crucial role. In this sense, today's wireless standards consider multiple-antenna techniques in order to exploit space diversity, spatial multiplexing and beamforming to achieve better levels of reliability and capacity. Such advantages, however, are obtained at the expense of increased system complexity which may be unaffordable in terms of size and energy efficiency. Consequently, some technical challenges remain to develop the adequate antenna technologies capable of supporting the aforementioned features in a limited physical space that the mobility demand dictates. The concept of time-modulated array (TMA) is a feasible multi-antenna technique ...
Maneiro-Catoria, Roberto — University of A Coruña
On MIMO Systems and Adaptive Arrays for Wireless Communication. Analysis and Practical Aspects
This thesis is concerned with the use of multiple antenna elements in wireless communication over frequency non-selective radio channels. Both measurement results and theoretical analysis are presented. New transmit strategies are derived and compared to existing transmit strategies, such as beamforming and space time block coding (STBC). It is found that the best transmission algorithm is largely dependent on the channel characteristics, such as the number of transmit and receive antennas and the existence of a line of sight component. Rayleigh fading multiple input multiple output (MIMO) channels are studied using an eigenvalue analysis and exact expressions for the bit error rates and outage capacities for beamforming and STBC is found. In general are MIMO fading channels correlated and there exists a mutual coupling between antenna elements. These findings are supported by indoor MIMO measurements. It is found that the ...
Wennstram, Mattias — Uppsala University
Parametric spatial audio processing utilising compact microphone arrays
This dissertation focuses on the development of novel parametric spatial audio techniques using compact microphone arrays. Compact arrays are of special interest since they can be adapted to fit in portable devices, opening the possibility of exploiting the potential of immersive spatial audio algorithms in our daily lives. The techniques developed in this thesis consider the use of signal processing algorithms adapted for human listeners, thus exploiting the capabilities and limitations of human spatial hearing. The findings of this research are in the following three areas of spatial audio processing: directional filtering, spatial audio reproduction, and direction of arrival estimation. In directional filtering, two novel algorithms have been developed based on the cross-pattern coherence (CroPaC). The method essentially exploits the directional response of two different types of beamformers by using their cross-spectrum to estimate a soft masker. The soft masker ...
Delikaris-Manias, Symeon — Aalto University
Nouvelles méthodes de traitement d’antenne en émission alliant diversité et formation de voie
This work deals with the use of an antenna array at the base station of a mobile communication system for transmission. In reception, solutions that exploit the antenna array are now well established. In transmission, however, the problem remains open. Two approaches are possible : exploit the array by using beamforming techniques or by using diversity techniques. These two approaches are based on opposite assumptions about the channels correlation, which implies a greater or smaller distance between antennas, depending on the environment. In practice, these assumptions are not verified. Here, we aim to deal with the problem as a whole for better exploiting the antenna array. This work treats the mono-user case, as well as the multi-user scenario. In the mono-user case, we propose a transmission scheme composed of a classical transmit diversity technique applied to virtual antennas, which are ...
Zanatta Filho, Danilo — Conservatoire National des Arts et Métiers
High-End Performance with Low-End Hardware: Analysis of Massive MIMO Base Station Transceivers
Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially. This technology can provide a high spectral efficiency. One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station. To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion. This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does ...
Mollén, Christopher — Linköpings universitet
A Unified Framework for Communications through MIMO Channels
MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) CHANNELS constitute a unified way of modeling a wide range of different physical communication channels, which can then be handled with a compact and elegant vector-matrix notation. The two paradigmatic examples are wireless multi-antenna channels and wireline Digital Subscriber Line (DSL) channels. Research in antenna arrays (also known as smart antennas) dates back to the 1960s. However, the use of multiples antennas at both the transmitter and the receiver, which can be naturally modeled as a MIMO channel, has been recently shown to offer a significant potential increase in capacity. DSL has gained popularity as a broadband access technology capable of reliably delivering high data rates over telephone subscriber lines. A DSL system can be modeled as a communication through a MIMO channel by considering all the copper twisted pairs within a binder as a whole rather ...
Palomar, Daniel Perez — Technical University of Catalonia (UPC)
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...
Moragrega, Ana — Universitat Politecnica de Catalunya
Distributed Adaptive Spatial Filtering in Resource-constrained Sensor Networks
Wireless sensor networks consist in a collection of battery-powered sensors able to gather, process and send data. They are typically used to monitor various phenomenons, in a plethora of fields, from environmental studies to smart logistics. Their wireless connectivity and relatively small size allow them to be deployed practically anywhere, even underwater or embedded in everyday clothing, and possibly capture data over a large area for extended periods of time. Their usefulness is therefore tied to their ability to work autonomously, with as little human intervention as possible. This functional requirement directly translates into two design constraints: (i) bandwidth and on-board compute must be used sparingly, in order to extend battery-life as much as possible, and (ii) the system must be resilient to node failures and changing environment. Due to their limited computing capabilities, data processing is usually performed by ...
Hovine, Charles — KU Leuven
Ultra low-power biomedical signal processing: an analog wavelet filter approach for pacemakers
The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and others that are more diffuse (e.g., small oscillations). This requires the use of analysis methods sufficiently versatile to handle events that can be at opposite extremes in terms of their time-frequency localization. Wavelet Transform (WT) has been extensively used in biomedical signal processing, mainly due to the versatility of the wavelet tools. The WT has been shown to be a very efficient tool for local analysis of nonstationary and fast transient signals due ...
Haddad, Sandro Augusto Pavlík — Delft University of Technology
Phase readout for satellite interferometry
This thesis describes the development of digital phase readout systems, so-called phasemeters, required for performing precise length measurements in and between satellites with laser interferometry at frequencies below 1 Hz. These technologies have been studied in the scope of the planned space-borne gravitational wave detector LISA (Laser Interferometer Space Antenna), and of future satellite geodesy missions such as GRACE (Gravity Recovery and Climate Experiment) Follow-On. The studies presented here were conducted between 2010 and 2013 at the Albert Einstein Institute in Hannover, Germany. The first part of this thesis provides a comprehensive overview of the basic concepts of inter-satellite interferometry. The analogue and digital parts of the phase measurement chain are described, with a focus on the design elements that are critical for achieving urad/sqrt(Hz) performance levels under the extreme conditions of the inter-satellite link. Digital signal simulations, as well ...
Gerberding, Oliver — Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover
On-board Processing for an Infrared Observatory
During the past two decades, image compression has developed from a mostly academic Rate-Distortion (R-D) field, into a highly commercial business. Various lossless and lossy image coding techniques have been developed. This thesis represents an interdisciplinary work between the field of astronomy and digital image processing and brings new aspects into both of the fields. In fact, image compression had its beginning in an American space program for efficient data storage. The goal of this research work is to recognize and develop new methods for space observatories and software tools to incorporate compression in space astronomy standards. While the astronomers benefit from new objective processing and analysis methods and improved efficiency and quality, for technicians a new field of application and research is opened. For validation of the processing results, the case of InfraRed (IR) astronomy has been specifically analyzed. ...
Belbachir, Ahmed Nabil — Vienna University of Technology
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.