Improving Auditory Steady-State Response Detection Using Multichannel EEG Signal Processing (2008)
Cochlear implant artifact suppression in EEG measurements
Cochlear implants (CIs) aim to restore hearing in severely to profoundly deaf adults, children and infants. Electrically evoked auditory steady-state responses (EASSRs) are neural responses to continuous modulated pulse trains, and can be objectively detected at the modulation frequency in the electro-encephalogram (EEG). EASSRs provide a number of advantages over other objective measures, because frequency-specific stimuli are used, because targeted brain areas can be studied, depending on the chosen stimulation parameters, and because they can objectively be detected using statistical methods. EASSRs can potentially be used to determine appropriate stimulation levels during CI fitting, without behavioral input from the subjects. Furthermore, speech understanding in noise varies greatly between CI subjects. EASSRs lend themselves well to study the underlying causes of this variability, such as the integrity of the electrode-neuron interface or changes in the auditory cortex following deafness and following ...
Deprez, Hanne — KU Leuven
Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson's, Alzheimer's, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients' anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long ...
Carlos Guerrero-Mosquera — University Carlos III of Madrid
Decomposition methods with applications in neuroscience
The brain is the most important signal processing unit in the human body. It is responsible for receiving, processing and storing information. One of the possibilities to study brain functioning is by placing electrodes on the scalp and recording the synchronous neuronal activity of the brain. Such a recording measures a combination of active processes in the whole brain. Unfortunately, it is also contaminated by artifacts. By extracting the artifacts and removing them, cleaned recordings can be investigated. Furthermore, it is easier to look at specific brain activities, like an epileptic seizure, than at a combination. In this thesis, we present different mathematical techniques that can be used to extract individual contributing sources from the measured signals for this purpose. We focused on Canonical Correlation Analysis (CCA), Independent Component Analysis (ICA) and Canonical/ Parallel Factor Analysis (CPA). We show that ...
De Vos, Maarten — Katholieke Universiteit Leuven
Due to their decreased ability to understand speech hearing impaired may have difficulties to interact in social groups, especially when several people are talking simultaneously. Fortunately, in the last decades hearing aids have evolved from simple sound amplifiers to modern digital devices with complex functionalities including noise reduction algorithms, which are crucial to improve speech understanding in background noise for hearing-impaired persons. Since many hearing aid users are fitted with two hearing aids, so-called binaural hearing aids have been developed, which exchange data and signals through a wireless link such that the processing in both hearing aids can be synchronized. In addition to reducing noise and limiting speech distortion, another important objective of noise reduction algorithms in binaural hearing aids is the preservation of the listener’s impression of the acoustical scene, in order to exploit the binaural hearing advantage and ...
Marquardt, Daniel — University of Oldenburg, Germany
Speech derereverberation in noisy environments using time-frequency domain signal models
Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...
Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg
Hearing loss can be caused by many factors, e.g., daily exposure to excessive noise in the work environment and listening to loud music. Another important reason can be age-related, i.e., the slow loss of hearing that occurs as people get older. In general hearing impaired people suffer from a frequency-dependent hearing loss and from a reduced dynamic range between the hearing threshold and the uncomfortable level. This means that the uncomfortable level for normal hearing and hearing impaired people suffering from so called sensorineural hearing loss remains the same but the hearing threshold and the sensitivity to soft sounds are shifted as a result of the hearing loss. To compensate for this kind of hearing loss the hearing aid should include a frequency-dependent and a level-dependent gain. The corresponding digital signal processing (DSP) algorithm is referred to as dynamic range ...
Ngo, Kim — KU Leuven
Miniaturization effects and node placement for neural decoding in EEG sensor networks
Electroencephalography (EEG) is a non-invasive neurorecording technique, which has the potential to be used for 24/7 neuromonitoring in daily life, e.g., in the context of neural prostheses, brain-computer interfaces, or for improved diagnosis of brain disorders. Although existing mobile wireless EEG headsets are a useful tool for short-term experiments, they are still too heavy, bulky and obtrusive, for long-term EEG-monitoring in daily life. However, we are now witnessing a wave of new miniature EEG sensor devices containing small electrodes embedded in them, which we refer to as Mini-EEGs. Mini-EEGs ideally consist of a wireless node with a small scalp area footprint, in which the electrodes, amplifier and wireless radio are embedded. However, due to their miniaturization, these mini-EEGs have the drawback that only a few EEG channels can be recorded within a small area. The latter also implies that the ...
Mundanad Narayanan, Abhijith — KU Leuven
Design and Evaluation of Feedback Control Algorithms for Implantable Hearing Devices
Using a hearing device is one of the most successful approaches to partially restore the degraded functionality of an impaired auditory system. However, due to the complex structure of the human auditory system, hearing impairment can manifest itself in different ways and, therefore, its compensation can be achieved through different classes of hearing devices. Although the majority of hearing devices consists of conventional hearing aids (HAs), several other classes of hearing devices have been developed. For instance, bone-conduction devices (BCDs) and cochlear implants (CIs) have successfully been used for more than thirty years. More recently, other classes of implantable devices have been developed such as middle ear implants (MEIs), implantable BCDs, and direct acoustic cochlear implants (DACIs). Most of these different classes of hearing devices rely on a sound processor running different algorithms able to compensate for the hearing impairment. ...
Bernardi, Giuliano — KU Leuven
Dereverberation and noise reduction techniques based on acoustic multi-channel equalization
In many hands-free speech communication applications such as teleconferencing or voice-controlled applications, the recorded microphone signals do not only contain the desired speech signal, but also attenuated and delayed copies of the desired speech signal due to reverberation as well as additive background noise. Reverberation and background noise cause a signal degradation which can impair speech intelligibility and decrease the performance for many signal processing techniques. Acoustic multi-channel equalization techniques, which aim at inverting or reshaping the measured or estimated room impulse responses between the speech source and the microphone array, comprise an attractive approach to speech dereverberation since in theory perfect dereverberation can be achieved. However in practice, such techniques suffer from several drawbacks, such as uncontrolled perceptual effects, sensitivity to perturbations in the measured or estimated room impulse responses, and background noise amplification. The aim of this thesis ...
Kodrasi, Ina — University of Oldenburg
Preserving binaural cues in noise reduction algorithms for hearing aids
Hearing aid users experience great difficulty in understanding speech in noisy environments. This has led to the introduction of noise reduction algorithms in hearing aids. The development of these algorithms is typically done monaurally. However, the human auditory system is a binaural system, which compares and combines the signals received by both ears to perceive a sound source as a single entity in space. Providing two monaural, independently operating, noise reduction systems, i.e. a bilateral configuration, to the hearing aid user may disrupt binaural information, needed to localize sound sources correctly and to improve speech perception in noise. In this research project, we first examined the influence of commercially available, bilateral, noise reduction algorithms on binaural hearing. Extensive objective and perceptual evaluations showed that the bilateral adaptive directional microphone (ADM) and the bilateral fixed directional microphone, two of the most ...
Van den Bogaert, Tim — Katholieke Universiteit Leuven
Mixed structural models for 3D audio in virtual environments
In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...
Geronazzo, Michele — University of Padova
Design and evaluation of noise reduction techniques for binaural hearing aids
One of the main complaints of hearing aid users is their degraded speech understanding in noisy environments. Modern hearing aids therefore include noise reduction techniques. These techniques are typically designed for a monaural application, i.e. in a single device. However, the majority of hearing aid users currently have hearing aids at both ears in a so-called bilateral fitting, as it is widely accepted that this leads to a better speech understanding and user satisfaction. Unfortunately, the independent signal processing (in particular the noise reduction) in a bilateral fitting can destroy the so-called binaural cues, namely the interaural time and level differences (ITDs and ILDs) which are used to localize sound sources in the horizontal plane. A recent technological advance are so-called binaural hearing aids, where a wireless link allows for the exchange of data (or even microphone signals) between the ...
Cornelis, Bram — KU Leuven
Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy
Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...
Hunyadi, Borbála — KU Leuven
Adaptive filtering techniques for noise reduction and acoustic feedback cancellation in hearing aids
Understanding speech in noise and the occurrence of acoustic feedback belong to the major problems of current hearing aid users. Hence, an urgent demand exists for efficient and well-working digital signal processing algorithms that offer a solution to these issues. In this thesis we develop adaptive filtering techniques for noise reduction and acoustic feedback cancellation. Thanks to the availability of low power digital signal processors, these algorithms can be integrated in a hearing aid. Because of the ongoing miniaturization in the hearing aid industry and the growing tendency towards multi-microphone hearing aids, robustness against imperfections such as microphone mismatch, has become a major issue in the design of a noise reduction algorithm. In this thesis we propose multimicrophone noise reduction techniques that are based on multi-channel Wiener filtering (MWF). Theoretical and experimental analysis demonstrate that these MWF-based techniques are less ...
Spriet, Ann — Katholieke Universiteit Leuven
Emotion assessment for affective computing based on brain and peripheral signals
Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able to identify human emotional states and take this information into account to decide on the proper actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In the last decades, most of the studies on emotion assessment have focused on the analysis of facial expressions and speech to determine the emotional state of a person. Physiological activity also includes emotional information that can be used for emotion assessment but has received less attention despite of its advantages (for instance it can be less easily faked than facial expressions). This thesis reports on the use of two types of physiological activities to assess emotions in the context of affective computing: the activity ...
Chanel, Guillaume — University of Geneva
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.