Abstract / truncated to 115 words (read the full abstract)

The main objective of this thesis is to suggest a general Bayesian framework for model selection based on the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. In particular, we aim to reveal the undiscovered potentials of RJMCMC in model selection applications by exploiting the original formulation to explore spaces of di erent classes or structures and thus, to show that RJMCMC o ers a wider interpretation than just being a trans-dimensional model selection algorithm. The general practice is to use RJMCMC in a trans-dimensional framework e.g. in model estimation studies of linear time series, such as AR and ARMA and mixture processes, etc. In this thesis, we propose a new interpretation on RJMCMC which ... toggle 5 keywords

bayesian model selection reversible jump mcmc nonlinear model estimation volterra system identification heavy-tailed distribution modelling

Information

Author
Karakus, Oktay
Institution
Izmir Institute of Technology
Supervisors
Publication Year
2018
Upload Date
Oct. 23, 2018

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.