Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi


Linear Dynamical Systems with Sparsity Constraints: Theory and Algorithms

This thesis develops new mathematical theory and presents novel recovery algorithms for discrete linear dynamical systems (LDS) with sparsity constraints on either control inputs or initial state. The recovery problems in this framework manifest as the problem of reconstructing one or more sparse signals from a set of noisy underdetermined linear measurements. The goal of our work is to design algorithms for sparse signal recovery which can exploit the underlying structure in the measurement matrix and the unknown sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery. We answer three fundamental and interconnected questions on sparse signal recovery problems that arise in the context of LDS. First, what are necessary and sufficient conditions for the existence of a sparse solution? Second, given that a sparse solution exists, what are good low-complexity algorithms that ...

Joseph, Geethu — Indian Institute of Science, Bangalore


Bayesian Compressed Sensing using Alpha-Stable Distributions

During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...

Tzagkarakis, George — University of Crete


Search-Based Methods for the Sparse Signal Recovery Problem in Compressed Sensing

The sparse signal recovery, which appears not only in compressed sensing but also in other related problems such as sparse overcomplete representations, denoising, sparse learning, etc. has drawn a large attraction in the last decade. The literature contains a vast number of recovery methods, which have been analysed in theoretical and empirical aspects. This dissertation presents novel search-based sparse signal recovery methods. First, we discuss theoretical analysis of the orthogonal matching pursuit algorithm with more iterations than the number of nonzero elements of the underlying sparse signal. Second, best-fi rst tree search is incorporated for sparse recovery by a novel method, whose tractability follows from the properly de fined cost models and pruning techniques. The proposed method is evaluated by both theoretical and empirical analyses, which clearly emphasize the improvements in the recovery accuracy. Next, we introduce an iterative two ...

Karahanoglu, Nazim Burak — Sabanci University


General Approaches for Solving Inverse Problems with Arbitrary Signal Models

Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...

Tirer, Tom — Tel Aviv University


A comparative analysis of different approaches to target differentiation and localization using infrared sensors

This study compares the performances of various techniques for the differentiation and localization of commonly encountered features in indoor environments, such as planes, corners, edges, and cylinders, possibly with different surface properties, using simple infrared sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and differentiation process. The techniques considered include rule-based, template-based, and neural network-based target differentiation, parametric surface differentiation, and statistical pattern recognition techniques such as parametric density estimation, various linear and quadratic classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial neural network, and support vector machine classifiers. The geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor ...

Aytac, Tayfun — Bilkent University


Sketching for Large-Scale Learning of Mixture Models

Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. Furthermore, new challenges arise from modern database architectures, such as the requirements for learning methods to be amenable to streaming, parallel and distributed computing. In this context, an increasingly popular approach is to first compress the database into a representation called a linear sketch, that satisfies all the mentioned requirements, then learn the desired information using only this sketch, which can be significantly faster than using the full data if the sketch is small. In this thesis, we introduce a generic methodology to fit a mixture of probability distributions on the data, using only a sketch of the database. The sketch is defined by combining two notions from the reproducing kernel literature, namely kernel mean embedding and Random Features expansions. It is seen to correspond ...

Keriven, Nicolas — IRISA, Rennes, France


Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications

In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...

Chepuri, Sundeep Prabhakar — Delft University of Technology


Compressive Sensing of Cyclostationary Propeller Noise

This dissertation is the combination of three manuscripts –either published in or submitted to journals– on compressive sensing of propeller noise for detection, identification and localization of water crafts. Propeller noise, as a result of rotating blades, is broadband and radiates through water dominating underwater acoustic noise spectrum especially when cavitation develops. Propeller cavitation yields cyclostationary noise which can be modeled by amplitude modulation, i.e., the envelope-carrier product. The envelope consists of the so-called propeller tonals representing propeller characteristics which is used to identify water crafts whereas the carrier is a stationary broadband process. Sampling for propeller noise processing yields large data sizes due to Nyquist rate and multiple sensor deployment. A compressive sensing scheme is proposed for efficient sampling of second-order cyclostationary propeller noise since the spectral correlation function of the amplitude modulation model is sparse as shown in ...

Fırat, Umut — Istanbul Technical University


Security/Privacy Analysis of Biometric Hashing and Template Protection for Fingerprint Minutiae

This thesis has two main parts. The first part deals with security and privacy analysis of biometric hashing. The second part introduces a method for fixed-length feature vector extraction and hash generation from fingerprint minutiae. The upsurge of interest in biometric systems has led to development of biometric template protection methods in order to overcome security and privacy problems. Biometric hashing produces a secure binary template by combining a personal secret key and the biometric of a person, which leads to a two factor authentication method. This dissertation analyzes biometric hashing both from a theoretical point of view and in regards to its practical application. For theoretical evaluation of biohashes, a systematic approach which uses estimated entropy based on degree of freedom of a binomial distribution is outlined. In addition, novel practical security and privacy attacks against face image hashing ...

Berkay Topcu — Sabanci University


Sparsity Models for Signals: Theory and Applications

Many signal and image processing applications have benefited remarkably from the theory of sparse representations. In its classical form this theory models signal as having a sparse representation under a given dictionary -- this is referred to as the "Synthesis Model". In this work we focus on greedy methods for the problem of recovering a signal from a set of deteriorated linear measurements. We consider four different sparsity frameworks that extend the aforementioned synthesis model: (i) The cosparse analysis model; (ii) the signal space paradigm; (iii) the transform domain strategy; and (iv) the sparse Poisson noise model. Our algorithms of interest in the first part of the work are the greedy-like schemes: CoSaMP, subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP). It has been shown for the synthesis model that these can achieve a stable recovery ...

Giryes, Raja — Technion


Compressed Sensing: Novel Applications, Challenges, and Techniques

Compressed Sensing (CS) is a widely used technique for efficient signal acquisition, in which a very small number of (possibly noisy) linear measurements of an unknown signal vector are taken via multiplication with a designed ‘sensing matrix’ in an application-specific manner, and later recovered by exploiting the sparsity of the signal vector in some known orthonormal basis and some special properties of the sensing matrix which allow for such recovery. We study three new applications of CS, each of which poses a unique challenge in a different aspect of it, and propose novel techniques to solve them, advancing the field of CS. Each application involves a unique combination of realistic assumptions on the measurement noise model and the signal, and a unique set of algorithmic challenges. We frame Pooled RT-PCR Testing for COVID-19 – wherein RT-PCR (Reverse Transcription Polymerase Chain ...

Ghosh, Sabyasachi — Department of Computer Science and Engineering, Indian Institute of Technology Bombay


Video Content Analysis by Active Learning

Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...

Camara Chavez, Guillermo — Federal University of Minas Gerais


Adaptive Sparse Coding and Dictionary Selection

The sparse coding is approximation/representation of signals with the minimum number of coefficients using an overcomplete set of elementary functions. This kind of approximations/ representations has found numerous applications in source separation, denoising, coding and compressed sensing. The adaptation of the sparse approximation framework to the coding problem of signals is investigated in this thesis. Open problems are the selection of appropriate models and their orders, coefficient quantization and sparse approximation method. Some of these questions are addressed in this thesis and novel methods developed. Because almost all recent communication and storage systems are digital, an easy method to compute quantized sparse approximations is introduced in the first part. The model selection problem is investigated next. The linear model can be adapted to better fit a given signal class. It can also be designed based on some a priori information ...

Yaghoobi, Mehrdad — University of Edinburgh


Automatic Signature and Graphical Password Verification: Discriminant Features and New Application Scenarios

The proliferation of handheld devices such as smartphones and tablets brings a new scenario for biometric authentication, and in particular to automatic signature verification. Research on signature verification has been traditionally carried out using signatures acquired on digitizing tablets or Tablet-PCs. This PhD Thesis addresses the problem of user authentication on handled devices using handwritten signatures and graphical passwords based on free-form doodles, as well as the effects of biometric aging on signatures. The Thesis pretends to analyze: (i) which are the effects of mobile conditions on signature and doodle verification, (ii) which are the most distinctive features in mobile conditions, extracted from the pen or fingertip trajectory, (iii) how do different similarity computation (i.e. matching) algorithms behave with signatures and graphical passwords captured on mobile conditions, and (iv) what is the impact of aging on signature features and verification ...

Martinez-Diaz, Marcos — Universidad Autonoma de Madrid

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.