Compressed sensing approaches to large-scale tensor decompositions

Today’s society is characterized by an abundance of data that is generated at an unprecedented velocity. However, much of this data is immediately thrown away by compression or information extraction. In a compressed sensing (CS) setting the inherent sparsity in many datasets is exploited by avoiding the acquisition of superfluous data in the first place. We combine this technique with tensors, or multiway arrays of numerical values, which are higher-order generalizations of vectors and matrices. As the number of entries scales exponentially in the order, tensor problems are often large-scale. We show that the combination of simple, low-rank tensor decompositions with CS effectively alleviates or even breaks the so-called curse of dimensionality. After discussing the larger data fusion optimization framework for coupled and constrained tensor decompositions, we investigate three categories of CS type algorithms to deal with large-scale problems. First, ...

Vervliet, Nico — KU Leuven


Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing

This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...

Kronvall, Ted — Lund University


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon


Signal and Image Processing Algorithms Using Interval Convex Programming and Sparsity

In this thesis, signal and image processing algorithms based on sparsity and interval convex programming are developed for inverse problems. Inverse signal processing problems are solved by minimizing the ℓ1 norm or the Total Variation (TV) based cost functions in the literature. A modified entropy functional approximating the absolute value function is defined. This functional is also used to approximate the ℓ1 norm, which is the most widely used cost function in sparse signal processing problems. The modified entropy functional is continuously differentiable, and convex. As a result, it is possible to develop iterative, globally convergent algorithms for compressive sensing, denoising and restoration problems using the modified entropy functional. Iterative interval convex programming algorithms are constructed using Bregman’s D-Projection operator. In sparse signal processing, it is assumed that the signal can be represented using a sparse set of coefficients in ...

Kose, Kivanc — Bilkent University


Spectral Variability in Hyperspectral Unmixing: Multiscale, Tensor, and Neural Network-based Approaches

The spectral signatures of the materials contained in hyperspectral images, also called endmembers (EMs), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an image. Traditional spectral unmixing (SU) algorithms neglect the spectral variability of the endmembers, what propagates significant mismodeling errors throughout the whole unmixing process and compromises the quality of the estimated abundances. Therefore, significant effort have been recently dedicated to mitigate the effects of spectral variability in SU. However, many challenges still remain in how to best explore a priori information about the problem in order to improve the quality, the robustness and the efficiency of SU algorithms that account for spectral variability. In this thesis, new strategies are developed to address spectral variability in SU. First, an (over)-segmentation-based multiscale regularization strategy is proposed to explore spatial information about the abundance ...

Borsoi, Ricardo Augusto — Université Côte d'Azur; Federal University of Santa Catarina


Robust Methods for Sensing and Reconstructing Sparse Signals

Compressed sensing (CS) is a recently introduced signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are developed assuming a Gaussian (light-tailed) model for the corrupting noise. However, when the underlying signal and/or the measurements are corrupted by impulsive noise, commonly employed linear sampling operators, coupled with Gaussian-derived reconstruction algorithms, fail to recover a close approximation of the signal. This dissertation develops robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. To achieve this objective, we make use of robust statistics theory to develop appropriate methods addressing the problem of impulsive noise in CS systems. We develop a generalized Cauchy distribution (GCD) ...

Carrillo, Rafael — University of Delaware


Automatic Detection, Classification and Restoration of Defects in Historical Images

Historical photos are significant attestations of the inheritance of the past. Since Photography is an art that is more than 150 years old, more and more diffuse are the photographic archives all over the world. Nevertheless, time and bad preservation corrupts physical supports, and many important historical documents risk to be ruined and their content lost. Therefore solutions must be implemented to preserve their state and to recover damaged information. This PhD thesis proposes a general methodology, and several applicative solutions, to handle these problems, by means of digitization and digital restoration. The purpose is to create a useful tool to support non-expert users in the restoration process of damaged historical images. The content of this thesis is outlined as follows: Chapter 1 gives an overview on the problems related to management and preservation of cultural repositories, and discusses about ...

Mazzola, Giuseppe — Università degli studi di Palermo - Dipartimento di Ingegneria Informatica


Explicit and implicit tensor decomposition-based algorithms and applications

Various real-life data such as time series and multi-sensor recordings can be represented by vectors and matrices, which are one-way and two-way arrays of numerical values, respectively. Valuable information can be extracted from these measured data matrices by means of matrix factorizations in a broad range of applications within signal processing, data mining, and machine learning. While matrix-based methods are powerful and well-known tools for various applications, they are limited to single-mode variations, making them ill-suited to tackle multi-way data without loss of information. Higher-order tensors are a natural extension of vectors (first order) and matrices (second order), enabling us to represent multi-way arrays of numerical values, which have become ubiquitous in signal processing and data mining applications. By leveraging the powerful utitilies offered by tensor decompositions such as compression and uniqueness properties, we can extract more information from multi-way ...

Boussé, Martijn — KU Leuven


On some aspects of inverse problems in image processing

This work is concerned with two image-processing problems, image deconvolution with incomplete observations and data fusion of spectral images, and with some of the algorithms that are used to solve these and related problems. In image-deconvolution problems, the diagonalization of the blurring operator by means of the discrete Fourier transform usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods, or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. We propose a new deconvolution framework for images with incomplete observations that allows one to work with diagonalizable convolution operators, and therefore is very fast. The framework is also an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge ...

Simões, Miguel — Universidade de Lisboa, Instituto Superior Técnico & Université Grenoble Alpes


Reconstruction and clustering with graph optimization and priors on gene networks and images

The discovery of novel gene regulatory processes improves the understanding of cell phenotypic responses to external stimuli for many biological applications, such as medicine, environment or biotechnologies. To this purpose, transcriptomic data are generated and analyzed from DNA microarrays or more recently RNAseq experiments. They consist in genetic expression level sequences obtained for all genes of a studied organism placed in different living conditions. From these data, gene regulation mechanisms can be recovered by revealing topological links encoded in graphs. In regulatory graphs, nodes correspond to genes. A link between two nodes is identified if a regulation relationship exists between the two corresponding genes. Such networks are called Gene Regulatory Networks (GRNs). Their construction as well as their analysis remain challenging despite the large number of available inference methods. In this thesis, we propose to address this network inference problem ...

Pirayre, Aurélie — IFP Energies nouvelles


Convex and Nonconvex Optimization Geometries

As many machine learning and signal processing problems are fundamentally nonconvex and too expensive/difficult to be convexified, my research is focused on understanding the optimization landscapes of their fundamentally nonconvex formulations. After understanding their optimization landscapes, we can develop optimization algorithms to efficiently navigate these optimization landscapes and achieve the global optimality convergence. So, the main theme of this thesis would be optimization, with an emphasis on nonconvex optimization and algorithmic developments for these popular optimization problems. This thesis can be conceptually divided into four parts: Part 1: Convex Optimization. In the first part, we apply convex relaxations to several popular nonconvex problems in signal processing and machine learning (e.g. line spectral estimation problem and tensor decomposition problem) and prove that the solving the new convex relaxation problems is guaranteed to achieve the globally optimal solutions of their original nonconvex ...

Li, Qiuwei — Colorado School of Mines


Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University


Parallel Magnetic Resonance Imaging reconstruction problems using wavelet representations

To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from ac- quired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the ob- served data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve ac- curate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on ...

Lotfi CHAARI — University Paris-Est


Geometric Approach to Statistical Learning Theory through Support Vector Machines (SVM) with Application to Medical Diagnosis

This thesis deals with problems of Pattern Recognition in the framework of Machine Learning (ML) and, specifically, Statistical Learning Theory (SLT), using Support Vector Machines (SVMs). The focus of this work is on the geometric interpretation of SVMs, which is accomplished through the notion of Reduced Convex Hulls (RCHs), and its impact on the derivation of new, efficient algorithms for the solution of the general SVM optimization task. The contributions of this work is the extension of the mathematical framework of RCHs, the derivation of novel geometric algorithms for SVMs and, finally, the application of the SVM algorithms to the field of Medical Image Analysis and Diagnosis (Mammography). Geometric SVM Framework's extensions: The geometric interpretation of SVMs is based on the notion of Reduced Convex Hulls. Although the geometric approach to SVMs is very intuitive, its usefulness was restricted by ...

Mavroforakis, Michael — University of Athens


General Approaches for Solving Inverse Problems with Arbitrary Signal Models

Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...

Tirer, Tom — Tel Aviv University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.