Model-based iterative reconstruction algorithms for computed tomography

Computed Tomography (CT) is a powerful tool for non-destructive imaging in which an object's interior is visualized by reconstructing a set of projection images. The technique can be applied in various modalities, ranging from a typical X-ray CT scanner to electron microscopy and synchrotron beamlines. Often, only limited projection data is available, which makes the reconstruction process more dicult and results in reconstruction artifacts if standard techniques are employed. Limited data problems can arise in a variety of applications. In medical CT, the acquisition of only a limited number of projections is bene cial to reduce the radiation dose delivered to the patient. In electron tomography, the sample can only be rotated over a limited tilt range due to mechanical constraints and the number of acquisition angles is often relatively small to avoid beam damage. In dynamic CT, the time ...

Geert Van Eyndhoven — University of Antwerp


Local Prior Knowledge in Tomography

Computed tomography (CT) is a technique that uses computation to form an image of the inside of an object or person, by combining projections of that object or person. The word tomography is derived from the Greek word tomos, meaning slice. The basis for computed tomography was laid in 1917 by Johann Radon, an Austrian mathematician. Computed tomography has a broad range of applications, the best known being medical imaging (the CT scanner), where X-rays are used for making the projection images. The rst practical application of CT was, however, in astronomy, by Ronald Bracewell in 1956. He used CT to improve the resolution of radio-astronomical observations. The practical applications in this thesis are from electron tomography, where the images are made with an electron microscope, and from preclinical research, where the images are made with a CT scanner. There ...

Roelandts, Tom — University of Antwerp


Inverse Scattering Procedures for the Reconstruction of One-Dimensional Permittivity Range Profiles

Inverse scattering is relevant to a very large class of problems, where the unknown structure of a scattering object is estimated by measuring the scattered field produced by known probing waves. Therefore, for more than three decades, the promises of non-invasive imaging inspection by electromagnetic probing radiations have been justifying a research interest on these techniques. Several application areas are involved, such as civil and industrial engineering, non-destructive testing and medical imaging as well as subsurface inspection for oil exploration or unexploded devices. In spite of this relevance, most scattering tomography techniques are not reliable enough to solve practical problems. Indeed, the nonlinear relationship between the scattered field and the object function and the robustness of the inversion algorithms are still open issues. In particular, microwave tomography presents a number of specific difficulties that make it much more involved to ...

Genovesi, Simone — University of Pisa


Numerical Approaches for Solving the Combined Reconstruction and Registration of Digital Breast Tomosynthesis

Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...

Yang, Guang — University College London


An enhanced sensitivity procedure for continuous gravitational wave detection: targeting the Galactic Center

The recent announcement by the LIGO and Virgo Collaborations of the direct detection of gravitational waves started the era of gravitational wave astrophysics. Up to now there have been five confirmed detections (GW150914, GW151226, GW170104, GW170814 and GW170817). Each of the GW events detected so far, shed light on multiple aspects of gravity. The first four events were due to the coalescence of a binary black hole system. August 17th 2017 marked the beginning of the so-called Multi-Messenger astronomy: the binary neutron star merger GW170817 has been observed almost simultaneously by LIGO and Virgo interferometers and several telescopes in space and on Earth, which detected the electromagnetic counterpart of this event (first as a short gamma-ray burst, GRB 170817A, and then in the visible, infra-red and X-ray bands). These last two years of great scientific discoveries would not have been ...

Piccinni, Ornella Juliana — Sapienza University, INFN Roma1


Diplophonic Voice - Definitions, models, and detection

Voice disorders need to be better understood because they may lead to reduced job chances and social isolation. Correct treatment indication and treatment effect measurements are needed to tackle these problems. They must rely on robust outcome measures for clinical intervention studies. Diplophonia is a severe and often misunderstood sign of voice disorders. Depending on its underlying etiology, diplophonic patients typically receive treatment such as logopedic therapy or phonosurgery. In the current clinical practice diplophonia is determined auditively by the medical doctor, which is problematic from the viewpoints of evidence-based medicine and scientific methodology. The aim of this thesis is to work towards objective (i.e., automatic) detection of diplophonia. A database of 40 euphonic, 40 diplophonic and 40 dysphonic subjects has been acquired. The collected material consists of laryngeal high-speed videos and simultaneous high-quality audio recordings. All material has been ...

Aichinger, Philipp — Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University of Vienna; Signal Processing and Speech Communication Laboratory Graz University of Technology, Austria


Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Design and development of multi-biometric systems

Biometric recognition for a long time has been used in confined spaces, usually indoor, where security-critical operations required high accuracy recognition systems, e.g. in police stations, banks, companies, airports. Field activities, on the contrary, required more portability and flexibility leading to the development of devices for less constrained biometric traits acquisition and consequently of robust algorithms for biometric recognition in less constrained conditions. However, the application of "portable" biometric recognition, was still limited in specific fields e.g. for immigration control, and still required dedicated devices. A further step would be to spread the use of biometric recognition on personal devices, as personal computers, tablets and smartphones. Some attempts in this direction were made embedding fingerprint scanners in laptops or smartphones. So far biometric recognition on personal devices has been employed just for a limited set of tasks, as to unlock ...

Galdi, Chiara — University of Salerno and EURECOM


Towards an Automated Portable Electroencephalography-based System for Alzheimer’s Disease Diagnosis

Alzheimer’s disease (AD) is a neurodegenerative terminal disorder that accounts for nearly 70% of dementia cases worldwide. Global dementia incidence is projected to 75 million cases by 2030, with the majority of the affected individuals coming from low- and medium- income countries. Although there is no cure for AD, early diagnosis can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using mental status examinations, expensive neuroimaging scans, and invasive laboratory tests, all of which render the diagnosis time-consuming and costly. Notwithstanding, over the last decade electroencephalography (EEG), specifically resting-state EEG (rsEEG), has emerged as an alternative technique for AD diagnosis with accuracies inline with those obtained with more expensive neuroimaging tools, such as magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET). However the use of rsEEG for ...

Cassani, Raymundo — Université du Québec, Institut national de la recherche scientifique


Informed spatial filters for speech enhancement

In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...

Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Computer-aided Diagnosis of Pulmonary Embolism in Opacified CT Images

Pulmonary embolism (PE) is an extremely common and highly lethal condition that is a leading cause of death in all age groups. Over the past 10 years, computed tomography (CT) scanners have gained acceptance as a minimally invasive method for diagnosing PE. In this manuscript, a framework for computer-aided diagnosis of PE in contrast-enhanced CT images is presented. It consists of a combination of a method for segmenting the pulmonary arteries (PA), emboli detection methods as well as a scheme for evaluating their performances. The segmentation of the PA serves one of the clot detection methods, and is carried out through a region growing method that makes use of a priori knowledge of vessel topology. Two different approaches for clot detection are proposed: the first one performs clot detection by analyzing the concavities in the segmentation of the pulmonary arterial ...

Sebbe, Raphael — Universite de Mons


Compressive Sensing Based Candidate Detector and its Applications to Spectrum Sensing and Through-the-Wall Radar Imaging

Signal acquisition is a main topic in signal processing. The well-known Shannon-Nyquist theorem lies at the heart of any conventional analog to digital converters stating that any signal has to be sampled with a constant frequency which must be at least twice the highest frequency present in the signal in order to perfectly recover the signal. However, the Shannon-Nyquist theorem provides a worst-case rate bound for any bandlimited data. In this context, Compressive Sensing (CS) is a new framework in which data acquisition and data processing are merged. CS allows to compress the data while is sampled by exploiting the sparsity present in many common signals. In so doing, it provides an efficient way to reduce the number of measurements needed for perfect recovery of the signal. CS has exploded in recent years with thousands of technical publications and applications ...

Lagunas, Eva — Universitat Politecnica de Catalunya

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.