Model-based iterative reconstruction algorithms for computed tomography

Computed Tomography (CT) is a powerful tool for non-destructive imaging in which an object's interior is visualized by reconstructing a set of projection images. The technique can be applied in various modalities, ranging from a typical X-ray CT scanner to electron microscopy and synchrotron beamlines. Often, only limited projection data is available, which makes the reconstruction process more dicult and results in reconstruction artifacts if standard techniques are employed. Limited data problems can arise in a variety of applications. In medical CT, the acquisition of only a limited number of projections is bene cial to reduce the radiation dose delivered to the patient. In electron tomography, the sample can only be rotated over a limited tilt range due to mechanical constraints and the number of acquisition angles is often relatively small to avoid beam damage. In dynamic CT, the time ...

Geert Van Eyndhoven — University of Antwerp


Towards In Loco X-ray Computed Tomography

Computed tomography (CT) is a non-invasive imaging technique that allows to reveal the inner structure of an object by combining a series of projection images that were acquired from dierent directions. CT nowadays has a broad range of applications, including those in medicine, preclinical research, nondestructive testing, materials science, etc. One common feature of the tomographic setups used in most applications is the requirement to put an object into a scanner. The rst major disadvantage of such a requirement is the constraint imposed on the size of the object that can be scanned. The second one is the need to move the object which might be di cult or might cause undesirable changes in the object. A possibility to perform in loco, i. e. on site, tomography will open up numerous applications for tomography in nondestructive testing, security, medicine, archaeology ...

Dabravolski, Andrei — University of Antwerp


Inverse Scattering Procedures for the Reconstruction of One-Dimensional Permittivity Range Profiles

Inverse scattering is relevant to a very large class of problems, where the unknown structure of a scattering object is estimated by measuring the scattered field produced by known probing waves. Therefore, for more than three decades, the promises of non-invasive imaging inspection by electromagnetic probing radiations have been justifying a research interest on these techniques. Several application areas are involved, such as civil and industrial engineering, non-destructive testing and medical imaging as well as subsurface inspection for oil exploration or unexploded devices. In spite of this relevance, most scattering tomography techniques are not reliable enough to solve practical problems. Indeed, the nonlinear relationship between the scattered field and the object function and the robustness of the inversion algorithms are still open issues. In particular, microwave tomography presents a number of specific difficulties that make it much more involved to ...

Genovesi, Simone — University of Pisa


Numerical Approaches for Solving the Combined Reconstruction and Registration of Digital Breast Tomosynthesis

Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...

Yang, Guang — University College London


Computer-aided Diagnosis of Pulmonary Embolism in Opacified CT Images

Pulmonary embolism (PE) is an extremely common and highly lethal condition that is a leading cause of death in all age groups. Over the past 10 years, computed tomography (CT) scanners have gained acceptance as a minimally invasive method for diagnosing PE. In this manuscript, a framework for computer-aided diagnosis of PE in contrast-enhanced CT images is presented. It consists of a combination of a method for segmenting the pulmonary arteries (PA), emboli detection methods as well as a scheme for evaluating their performances. The segmentation of the PA serves one of the clot detection methods, and is carried out through a region growing method that makes use of a priori knowledge of vessel topology. Two different approaches for clot detection are proposed: the first one performs clot detection by analyzing the concavities in the segmentation of the pulmonary arterial ...

Sebbe, Raphael — Universite de Mons


Video person recognition strategies using head motion and facial appearance

In this doctoral dissertation, we principally explore the use of the temporal information available in video sequences for person and gender recognition; in particular, we focus on the analysis of head and facial motion, and their potential application as biometric identifiers. We also investigate how to exploit as much video information as possible for the automatic recognition; more precisely, we examine the possibility of integrating the head and mouth motion information with facial appearance into a multimodal biometric system, and we study the extraction of novel spatio-temporal facial features for recognition. We initially present a person recognition system that exploits the unconstrained head motion information, extracted by tracking a few facial landmarks in the image plane. In particular, we detail how each video sequence is firstly pre-processed by semiautomatically detecting the face, and then automatically tracking the facial landmarks over ...

Matta, Federico — Eurécom / Multimedia communications


Tradeoffs and limitations in statistically based image reconstruction problems

Advanced nuclear medical imaging systems collect multiple attributes of a large number of photon events, resulting in extremely large datasets which present challenges to image reconstruction and assessment. This dissertation addresses several of these challenges. The image formation process in nuclear medical imaging can be posed as a parametric estimation problem where the image pixels are the parameters of interest. Since nuclear medical imaging applications are often ill-posed inverse problems, unbiased estimators result in very noisy, high-variance images. Typically, smoothness constraints and a priori information are used to reduce variance in medical imaging applications at the cost of biasing the estimator. For such problems, there exists an inherent tradeoff between the recovered spatial resolution of an estimator, overall bias, and its statistical variance; lower variance can only be bought at the price of decreased spatial resolution and/or increased overall bias. ...

Kragh, Tom — University of Michigan


Bayesian Compressed Sensing using Alpha-Stable Distributions

During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...

Tzagkarakis, George — University of Crete


General Approaches for Solving Inverse Problems with Arbitrary Signal Models

Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...

Tirer, Tom — Tel Aviv University


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Biological Image Analysis

In biological research images are extensively used to monitor growth, dynamics and changes in biological specimen, such as cells or plants. Many of these images are used solely for observation or are manually annotated by an expert. In this dissertation we discuss several methods to automate the annotating and analysis of bio-images. Two large clusters of methods have been investigated and developed. A first set of methods focuses on the automatic delineation of relevant objects in bio-images, such as individual cells in microscopic images. Since these methods should be useful for many different applications, e.g. to detect and delineate different objects (cells, plants, leafs, ...) in different types of images (different types of microscopes, regular colour photographs, ...), the methods should be easy to adjust. Therefore we developed a methodology relying on probability theory, where all required parameters can easily ...

De Vylder, Jonas — Ghent University


Advanced signal processing for magnetic resonance spectroscopy

Assertive diagnosis of cancer, Alzheimer’s disease, epilepsy and other metabolic diseases is essential to provide patients with the adequate treatment. Recently, different invasive and non-invasive techniques have been developed for this purpose, nevertheless, due to their harmless properties the non-invasive techniques have gained more value. Magnetic Resonance is a well-known non-invasive technique that provides spectra (metabolite peaks) and images (anatomical structures) of the examined tissue. In Magnetic Resonance Spectroscopy (MRS), molecules containing certain excitable nuclei, such as 1H, provide the metabolite information. As a consequence, the peaks in the MR spectra correspond to observable metabolites which are the biomarkers of diseases. Finally, metabolite concentrations are computed and compared against normal values in order to establish the diagnosis. The method to obtain such amplitudes is also called quantification and its accuracy is essential for diagnosis assessment. Quantification of MRS signals is ...

Osorio Garcia, Maria Isabel — KU Leuven


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Low Complexity Image Recognition Algorithms for Handheld Devices

Content Based Image Retrieval (CBIR) has gained a lot of interest over the last two decades. The need to search and retrieve images from databases, based on information (“features”) extracted from the image itself, is becoming increasingly important. CBIR can be useful for handheld image recognition devices in which the image to be recognized is acquired with a camera, and thus there is no additional metadata associated to it. However, most CBIR systems require large computations, preventing their use in handheld devices. In this PhD work, we have developed low-complexity algorithms for content based image retrieval in handheld devices for camera acquired images. Two novel algorithms, ‘Color Density Circular Crop’ (CDCC) and ‘DCT-Phase Match’ (DCTPM), to perform image retrieval along with a two-stage image retrieval algorithm that combines CDCC and DCTPM, to achieve the low complexity required in handheld devices ...

Ayyalasomayajula, Pradyumna — EPFL


Analiza Metod Detekcji Dyfrakcyjnych Linii Kikuchiego

The goal of the dissertation is to investigate and propose new methods for automatic Kikuchi lines detection. New subdivision of microscopic investigation called Orientation Microscopy is already well known in scanning electron microscope (SEM). Spatial resolution in SEM causes the limitation for investigation of fine grained and highly deformed materials. Needs for investigation in nanoscale contribute to development of an appropriate method for transmission electron microscope (TEM). Automated acquisition and indexing Kikuchi diffraction pattern, necessary for creation of orientation maps in TEM, cause more difficulties than in SEM. In order to solve the problem, the author developed and tested three methods for automatic Kikuchi lines detection. The first method is based on directional image filtration and scanning the entire image with a specially designed mask. This method yields good results but is relatively slow. The second method make use of ...

Fraczek, Rafal — AGH - University of Science and Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.