Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems (2014)
Design of Limited Feedback for Robust MMSE Precoding in Multiuser MISO Systems
In this thesis, we consider a multiuser system with a transmitter equipped with multiple antennas and only one antenna at each receiver user. This system, which is termed MUMISO (Multi User Multiple Input/Single Output), is of use to model the downlink of a wireless communication system, where multiple antennas at the base station transmit to several users with usually only one antenna at each receiving unit. This downlink channel is also called Broadcast Channel (BC). When considering this broadcast channel, the centralized transmitter clearly has more degrees of freedom than each of the receivers. Therefore, it is appropriate to separate the signals by applying precoding at the transmitter. To be able to design precoding, the transmitter needs knowledge about the channel states of the different receivers. In the case of Frequency Division Duplex (FDD) systems, this knowledge can be obtained ...
Castro Castro, Paula María — University of Coruna (UDC)
This work considers a Broadcast Channel (BC) system, where the transmitter is equipped with multiple antennas and each user at the receiver side could have one or more antennas. Depending on the number of antennas at the receiver side, such a system is known as Multiple-User Multiple-Input Single-Output (MU-MISO), for single antenna users, or Multiple-UserMultiple-InputMultiple-Output (MU-MIMO), for several antenna users. This model is suitable for current wireless communication systems. Regarding the direction of the data flow, we differentiate between downlink channel or BC, and uplink channel or Multiple Access Channel (MAC). In the BC the signals are sent from the Base Station (BS) to the users, whereas the information from the users is sent to the BS in the MAC. In this work we focus on the BC where the BS applies linear precoding taking advantage of multiple antennas. The ...
González-Coma, José Pablo — University of a Coruña
Non-Linear Precoding and Equalisation for Broadband MIMO Channels
Multiple-input multiple-output (MIMO) technology promises significant capacity improvements in order to more efficiently utilise the radio frequency spectrum. To achieve its anticipated multiplexing gain as well as meet the requirements for high data rate services, proposed broadband systems are based on OFDM or similar block based techniques, which are afflicted by poor design freedom at low redundancy, and are known to suffer badly from co-channel interference (CCI) in the presence of synchronisation errors. Non-block based approaches are scarce and use mostly decision feedback equalisation (DFE) or V-BLAST approaches adopted for the broadband case, as well as Tomlinson-Harashima precoding (THP). These methods do not require a guard interval and can therefore potentially achieve a higher spectral efficiency. The drawback of these schemes is the large effort in determining the optimum detection order in both space and time, often motivating the adoption ...
Waleed Eid Al-Hanafy — University of Strathclyde
Precoding and Relaying Algorithms for Multiuser MIMO Downlink Channels
In the last years, research has focused on multiple-input multiple-output (MIMO) wireless technology due to the capacity and performance improvement it provides, offering a higher spectral efficiency. In addition, when multiple users take part in the network, the scenario becomes much more complex, since resources like bandwidth, time or transmission power must be shared. Furthermore, the performance of the system is degraded as a consequence of the noise and multiuser interference (MUI). When the transmission is conducted from a base station (BS) to multiple users, a pre-equalization stage called precoding is applied. By means of this, each user will be able to interpret the signal independently, without the knowledge of the channel. Precoding techniques are classified into linear and non-linear. In fact, the non-linear Tomlinson-Harashima precoding (THP) and vector precoding (VP) techniques have been shown to achieve very good results ...
Jimenez, Idoia — University of Mondragon
Massive MIMO: Fundamentals and System Designs
The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...
Ngo, Quoc Hien — Linköping University
Feedback-Channel and Adaptive MIMO Coded-Modulations
When the transmitter of a communication system disposes of some Channel State Information (CSI), it is possible to design linear precoders that optimally allocate the power inducing high gains either in terms of capacity or in terms of reliable communications. In practical scenarios, this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch between the CSI at the transmitter and the real channel. In that context, this thesis deals with two different, but related, topics: the design of a feasible transmitter channel tracker for time varying channels, and the design of optimal linear precoders robust to imperfect channel estimates. The first part of the thesis proposes the design of a channel tracker that provides an accurate CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have been criticized because ...
Rey, Francesc — Universitat Politecnica de Catalunya
Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in order to increase the performance, spectral efficiency, and reliability. Theoretically, the channel capacity of those systems grows linearly with the number of transmit and receive antennas. An important performance metric beneath capacity is the normalised mean square error (MSE) under the assumption of optimal linear reception. Clearly, both performance measures depend on the properties of the MIMO channel as well as on the considered system approach, e.g. on the type of channel state information which is available at the transmitter. It has been shown that even partial CSI at the transmitter can increase the performance. In this thesis, we analyse the performance and design optimal transmit strategies of singleand multiuser MIMO systems with respect to the statistical properties of the fading channel and under different types of CSI at ...
Jorswieck, Eduard — TU Berlin / Mobile Communications
Precoding and Equalisation for Broadband MIMO Systems
Joint precoding and equalisation can help to effectively exploit the advantages of multi-input multi-output (MIMO) wireless communications systems. For broadband MIMO channels with channel state information (CSI) such techniques to date rely on block transmission where guard intervals are applied to mitigate inter-block (IBI) and inter-symbol interference (ISI) but reduce spectral efficiency. Therefore, this thesis investigates novel MIMO transceiver designs to improve the transmission rate and error performance. Firstly, a broadband MIMO precoding and equalisation design is proposed which combines a recently proposed broadband singular value decomposition (BSVD) algorithm for MIMO decoupling with conventional block transmission techniques to address the remaining broadband SISO subchannels. It is demonstrated that the BSVD helps not only to remove co-channel interference within a MIMO channel, but also reduces ISI at a very small loss in channel energy, leading to an improved error performance and ...
Ta, Chi Hieu — University of Strathclyde
Virtual-MIMO Systems with Compress-and-Forward Cooperation
Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected ...
Jiang, Jing — University of Edinburgh
Blind Equalisation for Space-Time Coding over ISI Channels
Multi-input multi-output (MIMO) channels are known to increase the capacity of a transmission link. This can be exploited to increase either the multiplexing gain or the diversity gain, which leads to a higher data throughput or a better resilience of the link to fading, respectively. This thesis is concerned with the diversity gain, which, in a flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC) scheme and a number of derivative techniques. For frequency selective fading, i.e. dispersive, MIMO channels, a few solutions have been reported in the literature including MIMO-OFDM, where the channel is decomposed into a number of narrowband problems, and a technique known as time-reversal STBC. For the latter, a number of blind adaptive algorithms have been derived, implemented and tested in order to avoid the requirement of explicit knowledge of the channel. The ...
Bendoukha, Samir — University of Strathclyde
Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks
Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...
Peng, Tong — University of York
Cooperative Techniques for Interference Management in Wireless Networks
In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...
Lameiro, Christian — University of Cantabria
Computationally Efficient Equalisation of Broadband Multiple-Input Multiple-Output Systems
Multiple-input multiple-output (MIMO) systems are encountered for example in communications if several transmit and receive antennas are empoyed, such that a separate transmit channel exists between every possible pairing of transmitter and receiver antennas. As a results if this spatial diversity, the channel capacity is dramatically increased over the single-inout single-output (SISO) case. While this increase is desired, the use of high data rates requires sophistiocated equalisation and/or detection schemes in the receiver to compensate for spatial and temporal dispersion in broadband MIMO channels, since a time-dispersive, in addition ot spatially-dispersice channel, must be assumed. The estimation of the broadband MIMO channel or its inverse is in general difficult and calls for training sequences that reduce the slot time for the transmission of actual data, which may counteract the promised gain in channel capacity. Another problem can be the computational ...
Bale, Viktor — University of Southampton
To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...
Zhang, Jianshu — Ilmenau University of Technology
Advanced Multi-Dimensional Signal Processing for Wireless Systems
The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...
Cheng, Yao — Ilmenau University of Technology
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.