Energy Efficient Network for Rural Broadband Access (2014)
The proliferation of technologies like Internet of Things (IoT) and Industrial IoT (IIoT) has led to rapid growth in the number of connected devices and the volume of data associated with IoT applications. It is expected that more than 125 billion IoT devices will be connected to the Internet by 2030. With the plethora of wireless IoT devices, we are moving towards the connected world which is the guiding principle for the IoT. The next generation of IoT network should be capable of interconnecting heterogeneous IoT sensor or devices for effective Device-to-Device (D2D), Machine-to-Machine (M2M) communications as well as facilitating various IoT services and applications. Therefore, the next generation of IoT networks is expected to meet the capacity demand of such a network of billions of IoT devices. The current underlying wireless network is based on Orthogonal Multiple Access (OMA) ...
Rauniyar, Ashish — University of Oslo, Norway
Spatio-temporal Prediction of Wind Fields
Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatio-temporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex umbers. In a further development, the VAR coefficients are ...
Dowell, Jethro — University of Strathclyde
Energy-Efficient Spectrum Sensing for Cognitive Radio Networks
Dynamic spectrum access employing cognitive radios has been proposed, in order to opportunistically use underutilized spectrum portions of a heavily licensed electromagnetic spectrum. Cognitive radios opportunistically share the spectrum, while avoiding any harmful interference to the primary licensed users. One major category of cognitive radios consists of is interweave cognitive radios. In this category, cognitive radios employ spectrum sensing to detect the empty bands of the radio spectrum, also known as spectrum holes. Upon detection of such a spectrum hole, cognitive radios dynamically share this empty band. However, as soon as the primary user appears in the corresponding band, cognitive radios have to vacate the band and look for a new spectrum hole. This way, reliable spectrum sensing becomes a key functionality of a cognitive radio network. The hidden terminal problem and fading effects have been shown to limit the ...
Maleki, Sina — TU Delft
Link Error Analysis and Modeling for Cross-Layer Design in UMTS Mobile Communication
Particularly in wireless mobile communications, link errors severely affect the quality of the services due to the high error probability and the specific error characteristics (burst errors) in the radio access part of the network. In this thesis it is shown that a thorough analysis and the appropriate modeling of the radiolink error behaviour is essential not only to evaluate and optimize the higher layer protocols and services. It is also the basis for finding network-aware cross-layer processing algorithms which are capable of exploiting the specific properties of the link error statistics (e.g. the predictability). This thesis presents the analysis of the radio link errors based on measurements in live UMTS (Universal Mobile Telecommunication System) radio access networks. It is shown that due to the link error characteristics basically two scenarios have to be distinguished: static and dynamic (regardless of ...
Karner, W. — Vienna University of Technology
Broadband Wireless Communication Systems for High Mobility Scenarios
Over the last few years multimedia and data-based services experienced a non-stopping growth. Unlike before, people do not use the services only from a static location, but they are continuously on the move between different scenarios, using their mobile devices to access data-based services. In parallel, commuter traffic from rural areas is also rising, since most of work places are in and around cities. During transportation, people intensively employ mobile devices to work, access to social networks, or as an entertainment means. Internet access is required for most of these services. Currently, GSM for Railways (GSM-R), which is based on the Global System for Mobile Communications (GSM), is the most widely used communication system between trains and the elements involved in operation, control, and intercommunication within the railway infrastructure. However, GSM-R is not well suited for supporting advanced services such ...
Rodríguez-Piñeiro, José — University of A Coruña
Full-Duplex Device-to-Device Communication for 5G Network
With the rapidly growing of the customers’ data traffic demand, improving the system capacity and increasing the user throughput have become essential concerns for the future fifth-generation (5G) wireless communication network. In this context, device-to-device (D2D) communication and in-band full-duplex (FD) are proposed as potential solutions to increase the spatial spectrum utilization and the user rate in a cellular network. D2D allows two nearby devices to communicate without base station (BS) participation or with limited participation. On the other hand, FD communication enables simultaneous transmission and reception in the same frequency band. Due to the short distance property of D2D links, exploiting the FD technology in D2D communication is an excellent choice to further improve the cellular spectrum efficiency and the users’ throughput. However, practical FD transceivers add new challenges for D2D communication. For instance, the existing FD devices cannot ...
Hussein CHOUR — CentraleSupélec (CS) and Université Libanaise (UL)
Enabling Technologies and Cyber-Physical Systems for Mission-Critical Scenarios
Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: ...
Fraga-Lamas, Paula — University of A Coruña
The fourth and fifth generation wireless communication systems (4G and 5G) use a physical layer (PHY) based on multicarrier modulations for data transmission using high bandwidth. This type of modulations has shown to provide high spectral efficiency while allowing low complexity radio channel equalization. These systems use OFDMA as a mechanism for distributing the available radio resources among different users. This allocation is done by assigning a subset of subcarriers to each user in a given instant of time. This provides great flexibility to the system that allows it to adapt to both the quality of service requirements of users and the radio channel state. The media access layer (MAC) of these systems is in charge of configuring the multiple OFDMA PHY layer parameters, in addition to managing the data flows of each user, transforming the higher layer packets into ...
Carro Lagoa, Ángel — University of A Coruña
Contributions to Analysis and Mitigation of Cochannel Interference in Cellular Wireless Networks
Cellular wireless networks have become a commodity. We use our cellular devices every day to connect to others, to conduct business, for entertainment. Strong demand for wireless access has made corresponding parts of radio spectrum very valuable. Consequently, network operators and their suppliers are constantly being pressured for its efficient use. Unlike the first and second generation cellular networks, current generations do not therefore separate geographical sites in frequency. This universal frequency reuse, combined with continuously increasing spatial density of the transmitters, leads to challenging interference levels in the network. This dissertation collects several contributions to analysis and mitigation of interference in cellular wireless networks. The contributions are categorized and set in the context of prior art based on key characteristics, then they are treated one by one. The first contribution encompasses dynamic signaling that measures instantaneous interference situations and ...
Cierny, Michal — Aalto University
Towards Zero-Power Wireless Machine-to-Machine Networks
This thesis aims at contributing to overcome two of the main challenges for the deployment of highly dense wireless M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the wireless channel; and the need to extend the network lifetime to reduce maintenance costs. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of random and hybrid access protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC ...
Vazquez-Gallego, Francisco — Universitat Politècnica de Catalunya
Joint Downlink Beamforming and Discrete Resource Allocation Using Mixed-Integer Programming
Multi-antenna processing is widely adopted as one of the key enabling technologies for current and future cellular networks. Particularly, multiuser downlink beamforming (also known as space-division multiple access), in which multiple users are simultaneously served with spatial transmit beams in the same time and frequency resource, achieves high spectral efficiency with reduced energy consumption. To harvest the potential of multiuser downlink beamforming in practical systems, optimal beamformer design shall be carried out jointly with network resource allocation. Due to the specifications of cellular standards and/or implementation constraints, resource allocation in practice naturally necessitates discrete decision makings, e.g., base station (BS) association, user scheduling and admission control, adaptive modulation and coding, and codebook-based beamforming (precoding). This dissertation focuses on the joint optimization of multiuser downlink beamforming and discrete resource allocation in modern cellular networks. The problems studied in this thesis involve ...
Cheng, Yong — Technische Universität Darmstadt
Stochastic Schemes for Dynamic Network Resource Allocation
Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...
Lopez Ramos, Luis Miguel — King Juan Carlos University
Resource management and optimization in multi-user DSL systems
Digital subscriber line (DSL) technology is currently the most widely deployed broadband internet access technology and will continue to play an important role during the next decade. However, one of the major sources that limits the performance of current DSL systems is crosstalk, which is a channel distortion that is caused by the electromagnetic coupling among the different copper wires (DSL connections). Multi-user resource management is a very promising approach to prevent or even remove the impact of crosstalk, and that can significantly increase the performance of DSL systems. In this thesis, multiple efficient algorithms are proposed for multi-user resource management that only require a very low computational complexity and that can be applied to large-scale DSL systems. The application of these algorithms allows to significantly increase the data rates of DSL systems. It is furthermore shown that the proposed ...
Tsiaflakis, Paschalis — Katholieke Universiteit Leuven
Non-Linear Precoding and Equalisation for Broadband MIMO Channels
Multiple-input multiple-output (MIMO) technology promises significant capacity improvements in order to more efficiently utilise the radio frequency spectrum. To achieve its anticipated multiplexing gain as well as meet the requirements for high data rate services, proposed broadband systems are based on OFDM or similar block based techniques, which are afflicted by poor design freedom at low redundancy, and are known to suffer badly from co-channel interference (CCI) in the presence of synchronisation errors. Non-block based approaches are scarce and use mostly decision feedback equalisation (DFE) or V-BLAST approaches adopted for the broadband case, as well as Tomlinson-Harashima precoding (THP). These methods do not require a guard interval and can therefore potentially achieve a higher spectral efficiency. The drawback of these schemes is the large effort in determining the optimum detection order in both space and time, often motivating the adoption ...
Waleed Eid Al-Hanafy — University of Strathclyde
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.