Optimization of Positioning Capabilities in Wireless Sensor Networks: from power efficiency to medium access (2016)
Signal processing algorithms for wireless acoustic sensor networks
Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...
Bertrand, Alexander — Katholieke Universiteit Leuven
Towards Zero-Power Wireless Machine-to-Machine Networks
This thesis aims at contributing to overcome two of the main challenges for the deployment of highly dense wireless M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the wireless channel; and the need to extend the network lifetime to reduce maintenance costs. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of random and hybrid access protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC ...
Vazquez-Gallego, Francisco — Universitat Politècnica de Catalunya
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph — KU Leuven
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph C. — KU Leuven
In recent years, advances in signal processing have led the wireless sensor networks to be capable of mobility. The signal processing in a wireless sensor network differs from that of a traditional wireless network mainly in two important aspects. Unlike traditional wireless networks, in a sensor network the signal processing is performed in a fully distributed manner as the sensor measurements in a distributed fashion across the network collected. Additionally, due to the limited onboard resource of a sensor network it is essential to develop energy and bandwidth efficient signal processing algorithms. The thesis is devoted to discuss the state of the arte of algorithms commonly known as tracking algorithms. Although tracking algorithms have only been attracting research and development attention recently, already a wide literature and great variety of proposed approaches regarding the topic exist. The dissertation focus on ...
Arienzo, Loredana — University of Salerno
Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks
Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...
Hassani, Amin — KU Leuven
Transmission strategies for wireless energy harvesting nodes
Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and Communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which is expected to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas emissions as reported by the European Council. Additionally, the autonomy of battery operated devices is getting reduced year after year since battery technology has not evolved fast enough to cope with the increase of energy consumption associated to the growth of the node’s processing capability. Energy harvesting, which is known as the process of collecting energy ...
Gregori, Maria — Centre Tecnològic de Telecomunicacions de Catalunya
Wireless Sensor Networks (WSNs) aim for accurate data gathering and representation of one or multiple physical variables from the environment, by means of sensor reading and wireless data packets transmission to a Data Fusion Center (DFC). There is no comprehensive common set of requirements for all WSN, as they are application dependent. Moreover, due to specific node capabilities or energy consumption constraints several tradeoffs have to be considered during the design, and particularly, the price of the sensor nodes is a determining factor. The distinction between small and large scale WSNs does not only refers to the quantity of sensor nodes, but also establishes the main design challenges in each case. For example, the node organization is a key issue in large scale WSNs, where many inexpensive nodes have to properly work in a coordinated manner. Regarding the amount of ...
Chidean, Mihaela I. — Rey Juan Carlos University
Device-to-Device Wireless Communications
Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...
Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna
Distributed Localization and Tracking of Acoustic Sources
Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...
Dorfan, Yuval — Bar Ilan University
Algorithms for Energy-Efficient Adaptive Wireless Sensor Networks
In this thesis we focus on the development of energy-efficient adaptive algorithms for Wireless Sensor Networks. Its contributions can be arranged in two main lines. Firstly, we focus on the efficient management of energy resources in WSNs equipped with finite-size batteries and energy-harvesting devices. To that end, we propose a censoring scheme by which the nodes are able to decide if a message transmission is worthy or not given their energetic condition. In order to do so, we model the system using a Markov Decision Process and use this model to derive optimal policies. Later, these policies are analyzed in simplified scenarios in order to get insights of their features. Finally, using Stochastic Approximation, we develop low-complexity censoring algorithms that approximate the optimal policy, with less computational complexity and faster convergence speed than other approaches such as Q-learning. Secondly, we ...
Fernandez-Bes, Jesus — Universidad Carlos III de Madrid
Decentralized Parameter and Random Field Estimation with Wireless Sensor Netwoks
In recent years, research on Wireless Sensor Networks (WSN) has attracted considerable attention. This is in part motivated by the large number of applications in which WSNs are called to play a pivotal role, such as parameter estimation (namely, moisture, temperature), event detection (leakage of pollutants, earthquakes, fires), or localization and tracking (for e.g. border control, inventory tracking), to name a few. This PhD dissertation is focused on the design of decentralized estimation schemes for wireless sensor networks. In this context, sensors observe a given phenomenon of interest (e.g. temperature). Consequently, sensor observations are conveyed over the wireless medium to a Fusion Center (FC) for further processing. The ultimate goal of the WSN is the estimation or reconstruction of the phenomenon with minimum distortion. The problem is addressed from a signal processing and information-theoretical perspective. However, the interplay with some ...
Javier Matamoros Morcillo — Centre Tecnològic de Telecomuniacions de Catalunya (CTTC)
This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...
Bogdanovic, Nikola — University of Patras
The proliferation of technologies like Internet of Things (IoT) and Industrial IoT (IIoT) has led to rapid growth in the number of connected devices and the volume of data associated with IoT applications. It is expected that more than 125 billion IoT devices will be connected to the Internet by 2030. With the plethora of wireless IoT devices, we are moving towards the connected world which is the guiding principle for the IoT. The next generation of IoT network should be capable of interconnecting heterogeneous IoT sensor or devices for effective Device-to-Device (D2D), Machine-to-Machine (M2M) communications as well as facilitating various IoT services and applications. Therefore, the next generation of IoT networks is expected to meet the capacity demand of such a network of billions of IoT devices. The current underlying wireless network is based on Orthogonal Multiple Access (OMA) ...
Rauniyar, Ashish — University of Oslo, Norway
Bayesian data fusion for distributed learning
This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...
Peng Wu — Northeastern University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.