Robust Equalization of Multichannel Acoustic Systems (2010)
Dereverberation and noise reduction techniques based on acoustic multi-channel equalization
In many hands-free speech communication applications such as teleconferencing or voice-controlled applications, the recorded microphone signals do not only contain the desired speech signal, but also attenuated and delayed copies of the desired speech signal due to reverberation as well as additive background noise. Reverberation and background noise cause a signal degradation which can impair speech intelligibility and decrease the performance for many signal processing techniques. Acoustic multi-channel equalization techniques, which aim at inverting or reshaping the measured or estimated room impulse responses between the speech source and the microphone array, comprise an attractive approach to speech dereverberation since in theory perfect dereverberation can be achieved. However in practice, such techniques suffer from several drawbacks, such as uncontrolled perceptual effects, sensitivity to perturbations in the measured or estimated room impulse responses, and background noise amplification. The aim of this thesis ...
Kodrasi, Ina — University of Oldenburg
Speech derereverberation in noisy environments using time-frequency domain signal models
Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...
Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg
Efficient parametric modeling, identification and equalization of room acoustics
Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...
Vairetti, Giacomo — KU Leuven
Multi-microphone noise reduction and dereverberation techniques for speech applications
In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...
Doclo, Simon — Katholieke Universiteit Leuven
Sparse Multi-Channel Linear Prediction for Blind Speech Dereverberation
In many speech communication applications, such as hands-free telephony and hearing aids, the microphones are located at a distance from the speaker. Therefore, in addition to the desired speech signal, the microphone signals typically contain undesired reverberation and noise, caused by acoustic reflections and undesired sound sources. Since these disturbances tend to degrade the quality of speech communication, decrease speech intelligibility and negatively affect speech recognition, efficient dereverberation and denoising methods are required. This thesis deals with blind dereverberation methods, not requiring any knowledge about the room impulse responses between the speaker and the microphones. More specifically, we propose a general framework for blind speech dereverberation based on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech signal in the time-frequency domain.
Jukić, Ante — University of Oldenburg
Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions
Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...
Dietzen, Thomas — KU Leuven
Reduced-Complexity Adaptive Filtering Techniques for Communications Applications
Adaptive filtering algorithms are powerful signal processing tools with widespread use in numerous engineering applications. Computational complexity is a key factor in determining the optimal implementation as well as real-time performance of the adaptive signal processors. To minimize the required hardware and/or software resources for implementing an adaptive filtering algorithm, it is desirable to mitigate its computational complexity as much as possible without imposing any significant sacrifice of performance. This thesis comprises a collection of thirteen peer-reviewed published works as well as an integrating material. The works are along the lines of a common unifying theme that is to devise new low-complexity adaptive filtering algorithms for communications and, more generally, signal processing applications. The main contributions are the new adaptive filtering algorithms, channel equalization techniques, and theoretical analyses listed below under four categories: 1) adaptive system identification • affine projection ...
Arablouei, Reza — University of South Australia
Adaptive interference suppression algorithms for DS-UWB systems
In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...
Sheng Li — University of York
Robust Speech Recognition on Intelligent Mobile Devices with Dual-Microphone
Despite the outstanding progress made on automatic speech recognition (ASR) throughout the last decades, noise-robust ASR still poses a challenge. Tackling with acoustic noise in ASR systems is more important than ever before for a twofold reason: 1) ASR technology has begun to be extensively integrated in intelligent mobile devices (IMDs) such as smartphones to easily accomplish different tasks (e.g. search-by-voice), and 2) IMDs can be used anywhere at any time, that is, under many different acoustic (noisy) conditions. On the other hand, with the aim of enhancing noisy speech, IMDs have begun to embed small microphone arrays, i.e. microphone arrays comprised of a few sensors close each other. These multi-sensor IMDs often embed one microphone (usually at their rear) intended to capture the acoustic environment more than the speaker’s voice. This is the so-called secondary microphone. While classical microphone ...
López-Espejo, Iván — University of Granada
Fast Blind Adaptive Equalisation for Multiuser CDMA Systems
In order to improve communication over a dispersive channel in a CDMA system, we have to re-establish the orthogonally of codes which are used when combining input signals from many users onto a single communication path, as otherwise the performance of such system is limited significantly by inter-symbol interference (ISI) and multiuser access interference (MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes to remove ISI and MAI have been reported in the literature, some of which rely on training sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or the Decision Directed algorithm (DD), which has similar convergence properties as the LMS in the absence of decision errors, the CMA is relatively slow compared to the DD ...
Daas, Adel — University of Strathclyde
Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...
Antonello, Niccolò — KU Leuven
Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments
The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...
Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg
Recently emerging techniques like wave field synthesis (WFS) or Higher-Order Ambisonics (HOA) allow for high-quality spatial audio reproduction, which makes them candidates for the audio reproduction in future telepresence systems or interactive gaming environments with acoustic human-machine interfaces. In such scenarios, acoustic echo cancellation (AEC) will generally be necessary to remove the loudspeaker echoes in the recorded microphone signals before further processing. Moreover, the reproduction quality of WFS or HOA can be improved by adaptive pre-equalization of the loudspeaker signals, as facilitated by listening room equalization (LRE). However, AEC and LRE require adaptive filters, where the large number of reproduction channels of WFS and HOA imply major computational and algorithmic challenges for the implementation of adaptive filters. A technique called wave-domain adaptive filtering (WDAF) promises to master these challenges. However, known literature is still far away from providing sufficient insight ...
Schneider, Martin — Friedrich-Alexander-University Erlangen-Nuremberg
Determining the geometry of an acoustic enclosure using microphone arrays has become an active area of research. Knowledge gained about the acoustic environment, such as the location of reflectors, can be advantageous for applications such as sound source localization, dereverberation and adaptive echo cancellation by assisting in tracking environment changes and helping the initialization of such algorithms. A methodology to blindly infer the geometry of an acoustic enclosure by estimating the location of reflective surfaces based on acoustic measurements using an arbitrary array geometry is developed and analyzed. The starting point of this work considers a geometric constraint, valid both in two and three-dimensions, that converts time-of-arrival and time-difference-of-arrival information into elliptical constraints about the location of reflectors. Multiple constraints are combined to yield the line or plane parameters of the reflectors by minimizing a specific cost function in the ...
Filos, Jason — Imperial College London
Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...
Gil-Cacho, Jose Manuel — KU Leuven
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.