Distributed Processing Techniques for Parameter Estimation and Efficient Data Gathering in Wireless Communication and Sensor Networks

This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...

Bogdanovic, Nikola — University of Patras


Sparse Sensing for Statistical Inference: Theory, Algorithms, and Applications

In today's society, we are flooded with massive volumes of data in the order of a billion gigabytes on a daily basis from pervasive sensors. It is becoming increasingly challenging to locally store and transport the acquired data to a central location for signal/data processing (i.e., for inference). To alleviate these problems, it is evident that there is an urgent need to significantly reduce the sensing cost (i.e., the number of expensive sensors) as well as the related memory and bandwidth requirements by developing unconventional sensing mechanisms to extract as much information as possible yet collecting fewer data. The first aim of this thesis is to develop theory and algorithms for data reduction. We develop a data reduction tool called sparse sensing, which consists of a deterministic and structured sensing function (guided by a sparse vector) that is optimally designed ...

Chepuri, Sundeep Prabhakar — Delft University of Technology


Robust Adaptive Machine Learning Algorithms for Distributed Signal Processing

Distributed networks comprising a large number of nodes, e.g., Wireless Sensor Networks, Personal Computers (PC’s), laptops, smart phones, etc., which cooperate with each other in order to reach a common goal, constitute a promising technology for several applications. Typical examples include: distributed environmental monitoring, acoustic source localization, power spectrum estimation, etc. Sophisticated cooperation mechanisms can significantly benefit the learning process, through which the nodes achieve their common objective. In this dissertation, the problem of adaptive learning in distributed networks is studied, focusing on the task of distributed estimation. A set of nodes sense information related to certain parameters and the estimation of these parameters constitutes the goal. Towards this direction, nodes exploit locally sensed measurements as well as information springing from interactions with other nodes of the network. Throughout this dissertation, the cooperation among the nodes follows the diffusion optimization ...

Chouvardas, Symeon — National and Kapodistrian University of Athens


Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks

Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...

Hassani, Amin — KU Leuven


Stochastic Schemes for Dynamic Network Resource Allocation

Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...

Lopez Ramos, Luis Miguel — King Juan Carlos University


Signal processing algorithms for wireless acoustic sensor networks

Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...

Bertrand, Alexander — Katholieke Universiteit Leuven


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph — KU Leuven


Distributed Adaptive Spatial Filtering in Resource-constrained Sensor Networks

Wireless sensor networks consist in a collection of battery-powered sensors able to gather, process and send data. They are typically used to monitor various phenomenons, in a plethora of fields, from environmental studies to smart logistics. Their wireless connectivity and relatively small size allow them to be deployed practically anywhere, even underwater or embedded in everyday clothing, and possibly capture data over a large area for extended periods of time. Their usefulness is therefore tied to their ability to work autonomously, with as little human intervention as possible. This functional requirement directly translates into two design constraints: (i) bandwidth and on-board compute must be used sparingly, in order to extend battery-life as much as possible, and (ii) the system must be resilient to node failures and changing environment. Due to their limited computing capabilities, data processing is usually performed by ...

Hovine, Charles — KU Leuven


Distributed Spatial Filtering in Wireless Sensor Networks

Wireless sensor networks (WSNs) paved the way for accessing data previously unavailable by deploying sensors in various locations in space, each collecting local measurements of a target source signal. By exploiting the information resulting from the multitude of signals measured at the different sensors of the network, various tasks can be achieved, such as denoising or dimensionality reduction which can in turn be used, e.g., for source localization or detecting seizures from electroencephalography measurements. Spatial filtering consists of linearly combining the signals measured at each sensor of the network such that the resulting filtered signal is optimal in some sense. This technique is widely used in biomedical signal processing, wireless communication, and acoustics, among other fields. In spatial filtering tasks, the aim is to exploit the correlation between the signals of all sensors in the network, therefore requiring access to ...

Musluoglu, Cem Ates — KU Leuven


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph C. — KU Leuven


Convergence Analysis of Distributed Consensus Algorithms

Inspired by new emerging technologies and networks of devices with high collective computational power, I focus my work on the problematics of distributed algorithms. While each device runs a relatively simple algorithm with low complexity, the group of interconnected units (agents) determines a behavior of high complexity. Typically, such units have their own memory and processing unit, and are interconnected and capable to exchange information with each other. More specifically, this work is focused on the distributed consensus algorithms. Such algorithms allow the agents to coordinate their behaviour and to distributively find a common agreement (consensus). To understand and analyze their behaviour, it is necessary to analyze the convergence of the consensus algorithm, i.e., under which conditions the algorithm reaches a consensus and under which it does not. Naturally, the communication channel can change and the agents may function asynchronously ...

Sluciak, Ondrej — Vienna University of Technology


Algorithms for Energy-Efficient Adaptive Wireless Sensor Networks

In this thesis we focus on the development of energy-efficient adaptive algorithms for Wireless Sensor Networks. Its contributions can be arranged in two main lines. Firstly, we focus on the efficient management of energy resources in WSNs equipped with finite-size batteries and energy-harvesting devices. To that end, we propose a censoring scheme by which the nodes are able to decide if a message transmission is worthy or not given their energetic condition. In order to do so, we model the system using a Markov Decision Process and use this model to derive optimal policies. Later, these policies are analyzed in simplified scenarios in order to get insights of their features. Finally, using Stochastic Approximation, we develop low-complexity censoring algorithms that approximate the optimal policy, with less computational complexity and faster convergence speed than other approaches such as Q-learning. Secondly, we ...

Fernandez-Bes, Jesus — Universidad Carlos III de Madrid


Energy-Efficient Target Tracking of Mobile Targets through Wireless Sensor Networks - Cross-layer Design and Optimization

In recent years, advances in signal processing have led the wireless sensor networks to be capable of mobility. The signal processing in a wireless sensor network differs from that of a traditional wireless network mainly in two important aspects. Unlike traditional wireless networks, in a sensor network the signal processing is performed in a fully distributed manner as the sensor measurements in a distributed fashion across the network collected. Additionally, due to the limited onboard resource of a sensor network it is essential to develop energy and bandwidth efficient signal processing algorithms. The thesis is devoted to discuss the state of the arte of algorithms commonly known as tracking algorithms. Although tracking algorithms have only been attracting research and development attention recently, already a wide literature and great variety of proposed approaches regarding the topic exist. The dissertation focus on ...

Arienzo, Loredana — University of Salerno


Signal Quantization and Approximation Algorithms for Federated Learning

Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...

A, Vijay — Indian Institute of Technology Bombay


MIMO Radars with Sparse Sensing

Multi-input and multi-output (MIMO) radars achieve high resolution of arrival direction by transmitting orthogonal waveforms, performing matched filtering at the receiver end and then jointly processing the measurements of all receive antennas. This dissertation studies the use of compressive sensing (CS) and matrix completion (MC) techniques as means of reducing the amount of data that need to be collected by a MIMO radar system, without sacrificing the system’s good resolution properties. MIMO radars with sparse sensing are useful in networked radar scenarios, in which the joint processing of the measurements is done at a fusion center, which might be connected to the receive antennas via a wireless link. In such scenarios, reduced amount of data translates into bandwidth and power saving in the receiver-fusion center link. First, we consider previously defined CS-based MIMO radar schemes, and propose optimal transmit antenna ...

Sun, Shunqiao — Rutgers, The State University of New Jersey

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.