Abstract / truncated to 115 words (read the full abstract)

Determining the geometry of an acoustic enclosure using microphone arrays has become an active area of research. Knowledge gained about the acoustic environment, such as the location of reflectors, can be advantageous for applications such as sound source localization, dereverberation and adaptive echo cancellation by assisting in tracking environment changes and helping the initialization of such algorithms. A methodology to blindly infer the geometry of an acoustic enclosure by estimating the location of reflective surfaces based on acoustic measurements using an arbitrary array geometry is developed and analyzed. The starting point of this work considers a geometric constraint, valid both in two and three-dimensions, that converts time-of-arrival and time-difference-of-arrival information into elliptical constraints about the ... toggle 9 keywords

MIMO SIMO audio audio signal processing digital signal processing geometric inference room acoustics room reconstruction microphone arrays

Information

Author
Filos, Jason
Institution
Imperial College London
Supervisor
Publication Year
2013
Upload Date
March 9, 2014

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.