Abstract / truncated to 115 words (read the full abstract)

This thesis concentrates on a major problem within audio signal processing, the separation of source signals from musical mixtures when only a single mixture channel is available. Source separation is the process by which signals that correspond to distinct sources are identified in a signal mixture and extracted from it. Producing multiple entities from a single one is an extremely underdetermined task, so additional prior information can assist in setting appropriate constraints on the solution set. The approach proposed uses prior information such that: (1) it can potentially be applied successfully to a large variety of musical mixtures, and (2) it requires minimal user intervention and no prior learning/training procedures (i.e., it is an unsupervised ... toggle 11 keywords

signal source separation audio residual monaural music information retrieval spectral filtering semi-blind underdetermined multipitch estimation note onset detection

Information

Author
Siamantas, Georgios
Institution
University of York
Supervisor
Publication Year
2009
Upload Date
Sept. 28, 2012

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.