Audio Visual Speech Enhancement (2009)
Abstract / truncated to 115 words
This thesis presents a novel approach to speech enhancement by exploiting the bimodality of speech production and the correlation that exists between audio and visual speech information. An analysis into the correlation of a range of audio and visual features reveals significant correlation to exist between visual speech features and audio filterbank features. The amount of correlation was also found to be greater when the correlation is analysed with individual phonemes rather than across all phonemes. This led to building a Gaussian Mixture Model (GMM) that is capable of estimating filterbank features from visual features. Phoneme-specific GMMs gave lower filterbank estimation errors and a phoneme transcription is decoded using audio-visual Hidden Markov Model (HMM). Clean ...
audio-visual – speech processing – speech enhancement
Information
- Author
- Almajai, Ibrahim
- Institution
- University of East Anglia
- Supervisors
- Publication Year
- 2009
- Upload Date
- Sept. 27, 2011
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.