Glottal Source Estimation and Automatic Detection of Dysphonic Speakers (2011)
Advances in Glottal Analysis and its Applications
From artificial voices in GPS to automatic systems of dictation, from voice-based identity verification to voice pathology detection, speech processing applications are nowadays omnipresent in our daily life. By offering solutions to companies seeking for efficiency enhancement with simultaneous cost saving, the market of speech technology is forecast to be especially promising in the next years. The present thesis deals with advances in glottal analysis in order to incorporate new techniques within speech processing applications. While current systems are usually based on information related to the vocal tract configuration, the airflow passing through the vocal folds, and called glottal flow, is expected to exhibit a relevant complementarity. Unfortunately, glottal analysis from speech recordings requires specific complex processing operations, which explains why it has been generally avoided. The main goal of this thesis is to provide new advances in glottal analysis ...
Drugman, Thomas — Universite de Mons
This study proposes a new spectral representation called the Zeros of Z-Transform (ZZT), which is an all-zero representation of the z-transform of the signal. In addition, new chirp group delay processing techniques are developed for analysis of resonances of a signal. The combination of the ZZT representation with the chirp group delay processing algorithms provides a useful domain to study resonance characteristics of source and filter components of speech. Using the two representations, effective algorithms are developed for: source-tract decomposition of speech, glottal flow parameter estimation, formant tracking and feature extraction for speech recognition. The ZZT representation is mainly important for theoretical studies. Studying the ZZT of a signal is essential to be able to develop effective chirp group delay processing methods. Therefore, first the ZZT representation of the source-filter model of speech is studied for providing a theoretical background. ...
Bozkurt, Baris — Universite de Mons
Diplophonic Voice - Definitions, models, and detection
Voice disorders need to be better understood because they may lead to reduced job chances and social isolation. Correct treatment indication and treatment effect measurements are needed to tackle these problems. They must rely on robust outcome measures for clinical intervention studies. Diplophonia is a severe and often misunderstood sign of voice disorders. Depending on its underlying etiology, diplophonic patients typically receive treatment such as logopedic therapy or phonosurgery. In the current clinical practice diplophonia is determined auditively by the medical doctor, which is problematic from the viewpoints of evidence-based medicine and scientific methodology. The aim of this thesis is to work towards objective (i.e., automatic) detection of diplophonia. A database of 40 euphonic, 40 diplophonic and 40 dysphonic subjects has been acquired. The collected material consists of laryngeal high-speed videos and simultaneous high-quality audio recordings. All material has been ...
Aichinger, Philipp — Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University of Vienna; Signal Processing and Speech Communication Laboratory Graz University of Technology, Austria
Fusing prosodic and acoustic information for speaker recognition
Automatic speaker recognition is the use of a machine to identify an individual from a spoken sentence. Recently, this technology has been undergone an increasing use in applications such as access control, transaction authentication, law enforcement, forensics, and system customisation, among others. One of the central questions addressed by this field is what is it in the speech signal that conveys speaker identity. Traditionally, automatic speaker recognition systems have relied mostly on short-term features related to the spectrum of the voice. However, human speaker recognition relies on other sources of information; therefore, there is reason to believe that these sources can play also an important role in the automatic speaker recognition task, adding complementary knowledge to the traditional spectrum-based recognition systems and thus improving their accuracy. The main objective of this thesis is to add prosodic information to a traditional ...
Farrus, Mireia — Universitat Politecnica de Catalunya
Oscillator-plus-Noise Modeling of Speech Signals
In this thesis we examine the autonomous oscillator model for synthesis of speech signals. The contributions comprise an analysis of realizations and training methods for the nonlinear function used in the oscillator model, the combination of the oscillator model with inverse filtering, both significantly increasing the number of `successfully' re-synthesized speech signals, and the introduction of a new technique suitable for the re-generation of the noise-like signal component in speech signals. Nonlinear function models are compared in a one-dimensional modeling task regarding their presupposition for adequate re-synthesis of speech signals, in particular considering stability. The considerations also comprise the structure of the nonlinear functions, with the aspect of the possible interpolation between models for different speech sounds. Both regarding stability of the oscillator and the premiss of a nonlinear function structure that may be pre-defined, RBF networks are found a ...
Rank, Erhard — Vienna University of Technology
Glottal-Synchronous Speech Processing
Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up ...
Thomas, Mark — Imperial College London
Emotion assessment for affective computing based on brain and peripheral signals
Current Human-Machine Interfaces (HMI) lack of “emotional intelligence”, i.e. they are not able to identify human emotional states and take this information into account to decide on the proper actions to execute. The goal of affective computing is to fill this lack by detecting emotional cues occurring during Human-Computer Interaction (HCI) and synthesizing emotional responses. In the last decades, most of the studies on emotion assessment have focused on the analysis of facial expressions and speech to determine the emotional state of a person. Physiological activity also includes emotional information that can be used for emotion assessment but has received less attention despite of its advantages (for instance it can be less easily faked than facial expressions). This thesis reports on the use of two types of physiological activities to assess emotions in the context of affective computing: the activity ...
Chanel, Guillaume — University of Geneva
Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing
This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...
Kronvall, Ted — Lund University
Digital Processing Based Solutions for Life Science Engineering Recognition Problems
The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...
Hussein, Walid — Technische Universität München
Discrete-time speech processing with application to emotion recognition
The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...
Kotti, Margarita — Aristotle University of Thessaloniki
Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...
Bahari, Mohamad Hasan — KU Leuven
Realtime and Accurate Musical Control of Expression in Voice Synthesis
In the early days of speech synthesis research, understanding voice production has attracted the attention of scientists with the goal of producing intelligible speech. Later, the need to produce more natural voices led researchers to use prerecorded voice databases, containing speech units, reassembled by a concatenation algorithm. With the outgrowth of computer capacities, the length of units increased, going from diphones to non-uniform units, in the so-called unit selection framework, using a strategy referred to as 'take the best, modify the least'. Today the new challenge in voice synthesis is the production of expressive speech or singing. The mainstream solution to this problem is based on the “there is no data like more data” paradigm: emotionspecific databases are recorded and emotion-specific units are segmented. In this thesis, we propose to restart the expressive speech synthesis problem, from its original voice ...
D' Alessandro, N. — Universite de Mons
Acoustic Event Detection: Feature, Evaluation and Dataset Design
It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...
Mina Mounir — KU Leuven, ESAT STADIUS
Signal processing algorithms for wireless acoustic sensor networks
Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...
Bertrand, Alexander — Katholieke Universiteit Leuven
The use of High-Order Sparse Linear Prediction for the Restoration of Archived Audio
Since the invention of Gramophone by Thomas Edison in 1877, vast amounts of cultural, entertainment, educational and historical audio recordings have been recorded and stored throughout the world. Through natural aging and improper storage, the recorded signal degrades and loses its information in terms of quality and intelligibility. Degradation of audio signals is considered as any unwanted modification to the audio signal after it has been recorded. There are different degradations affecting recorded signals on analog storage media. The degradations that are often encountered are clicks, hiss and ‘Wow and Flutter’. Several researches have been conducted in restoring degraded audio recordings. Most of the methods rely on some prior information of the underlying data and the degradation process. The success of these methods heavily depends on the prior information available. When such information is not available, a model of the ...
Dufera, Bisrat Derebssa — School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.